2
0
mirror of https://github.com/boostorg/math.git synced 2026-02-13 12:32:15 +00:00

Numerical differentiation by finite differences and the complex step derivative.

This commit is contained in:
Nick Thompson
2017-05-02 18:29:03 -06:00
parent 4c19a1ec34
commit 45226c7ef1
5 changed files with 588 additions and 0 deletions

View File

@@ -0,0 +1,234 @@
#ifndef BOOST_MATH_TOOLS_NUMERICAL_DIFFERENTIATION_HPP
#define BOOST_MATH_TOOLS_NUMERICAL_DIFFERENTIATION_HPP
/*
* Performs numerical differentiation by finite-differences.
*
* All numerical differentiation using finite-differences are ill-conditioned, and these routines are no exception.
* A simple argument demonstrates that the error is unbounded as h->0.
* Take the one sides finite difference formula f'(x) = (f(x+h)-f(x))/h.
* The evaluation of f induces an error as well as the error from the finite-difference approximation, giving
* |f'(x) - (f(x+h) -f(x))/h| < h|f''(x)|/2 + (|f(x)|+|f(x+h)|)eps/h =: g(h), where eps is the unit roundoff for the type.
* It is reasonable to choose h in a way that minimizes the maximum error bound g(h).
* The value of h that minimizes g is h = sqrt(2eps(|f(x)| + |f(x+h)|)/|f''(x)|), and for this value of h the error bound is
* sqrt(2eps(|f(x+h) +f(x)||f''(x)|)).
* In fact it is not necessary to compute the ratio (|f(x+h)| + |f(x)|)/|f''(x)|; the error bound of ~\sqrt{\epsilon} still holds if we set it to one.
*
* However, this analysis holds under the assumption that f can be computed within 1 ULP for any x.
* This is often incorrect, so in the computation of the error we assume more generously that the function can be evaluated to within \pm 3 ULP.
*
*
* For more details on this method of analysis, see
*
* http://www.uio.no/studier/emner/matnat/math/MAT-INF1100/h08/kompendiet/diffint.pdf
* http://web.archive.org/web/20150420195907/http://www.uio.no/studier/emner/matnat/math/MAT-INF1100/h08/kompendiet/diffint.pdf
*
*
* It can be shown on general grounds that when choosing the optimal h, the maximum error in f'(x) is ~(|f(x)|eps)^k/k+1|f^(k-1)(x)|^1/k+1.
* From this we can see that full precision can be recovered in the limit k->infinity.
*
* References:
*
* 1) Fornberg, Bengt. "Generation of finite difference formulas on arbitrarily spaced grids." Mathematics of computation 51.184 (1988): 699-706.
*
*
* The second algorithm is, IMO, miraculous. However, it requires that your function can be evaluated at complex arguments.
* The idea is that f(x+ih) = f(x) +ihf'(x) - h^2f''(x) + ... so f'(x) \approx Im[f(x+ih)]/h.
* No subtractive cancellation occurs. The error is ~ eps|f'(x)| + eps^2|f'''(x)|/6; hard to beat that.
*
* References:
*
* 1) Squire, William, and George Trapp. "Using complex variables to estimate derivatives of real functions." Siam Review 40.1 (1998): 110-112.
*/
#include <complex>
#include <boost/math/constants/constants.hpp>
namespace boost { namespace math { namespace tools {
template<class F, class Real>
Real complex_step_derivative(const F f, Real x)
{
// Is it really this easy? Yes.
// Note that some authors recommend taking the stepsize h to be smaller than epsilon(), some recommending use of the min().
// This idea was tested over a few billion test cases and found the make the error *much* worse.
// Even 2eps and eps/2 made the error worse, which was surprising.
using std::complex;
constexpr const Real step = std::numeric_limits<Real>::epsilon();
constexpr const Real inv_step = 1/std::numeric_limits<Real>::epsilon();
return f(complex<Real>(x, step)).imag()*inv_step;
}
template<class F, class Real, size_t order=6>
Real finite_difference_derivative(const F f, Real x, Real* error = nullptr)
{
static_assert(order == 1 || order == 2 || order == 4 || order == 6 || order == 8,
"Order of accuracy must be one of 1, 2, 4, 6, or 8.\n");
using std::sqrt;
using std::pow;
using std::abs;
using std::max;
using std::nextafter;
using boost::math::constants::half;
const Real eps = std::numeric_limits<Real>::epsilon();
// TODO: static if in C++17!
// Error bound ~eps^1/2
if (order == 1)
{
// Note that this estimate of h differs from the best estimate by a factor of sqrt((|f(x)| + |f(x+h)|)/|f''(x)|).
// Since this factor is invariant under the scaling f -> kf, then we are somewhat justified in approximating it by 1.
// This approximation will get better as we move to higher orders of accuracy.
Real h = 2*sqrt(eps);
// Redefine h so that x + h is representable. Not using this trick leads to large error.
// The compiler flag -ffast-math evaporates these operations . . .
Real temp = x + h;
h = temp - x;
// Handle the case x + h == x:
if (h == 0)
{
h = nextafter(x, std::numeric_limits<Real>::max()) - x;
}
Real yh = f(x+h);
Real y0 = f(x);
Real diff = yh - y0;
if (error)
{
Real ym = f(x-h);
Real ypph = abs(yh - 2*y0 + ym)/h;
// h*|f''(x)|*0.5 + (|f(x+h)+|f(x)|)*3*eps/h, where 3 allows for the function to be evaluated to \pm 3 ULP.
*error = ypph*half<Real>() + (abs(yh) + abs(y0))*3*eps/h;
}
return diff/h;
}
// Error bound ~eps^2/3
if (order == 2)
{
// See the previous discussion to understand determination of h and the error bound.
// Series[(f[x+h] - f[x-h])/(2*h), {h, 0, 4}]
Real h = pow(3*eps, boost::math::constants::third<Real>());
Real temp = x + h;
h = temp - x;
if (h == 0)
{
h = nextafter(x, std::numeric_limits<Real>::max()) - x;
}
Real yh = f(x+h);
Real ymh = f(x-h);
Real diff = yh - ymh;
if (error)
{
Real yth = f(x+2*h);
Real ymth = f(x-2*h);
*error = 3*eps*(abs(yh) + abs(ymh))/(2*h) + abs((yth - ymth)*half<Real>() - diff)/(6*h);
}
return diff/(2*h);
}
// Error bound ~eps^4/5
if (order == 4)
{
Real h = pow(11.25*eps, (Real) 1/ (Real) 5);
Real temp = x + h;
h = temp - x;
if (h == 0)
{
h = nextafter(x, std::numeric_limits<Real>::max()) - x;
}
Real ymth = f(x-2*h);
Real yth = f(x+2*h);
Real yh = f(x+h);
Real ymh = f(x-h);
Real y2 = ymth - yth;
Real y1 = yh - ymh;
if (error)
{
// Mathematica code to extrace the remainder:
// Series[(f[x-2*h]+ 8*f[x+h] - 8*f[x-h] - f[x+2*h])/(12*h), {h, 0, 7}]
Real y_three_h = f(x+3*h);
Real y_m_three_h = f(x-3*h);
// Error from fifth derivative:
*error = abs(half<Real>()*(y_three_h - y_m_three_h) + 2*(ymth - yth) + 5*half<Real>()*(yh - ymh) )/(30*h);
// Error from function evaluation, assuming 3ULP:
*error += 3*eps*(abs(yth) + abs(ymth) + 8*(abs(ymh) + abs(yh)))/(12*h);
}
return (y2+8*y1)/(12*h);
}
// Error bound ~eps^6/7
if (order == 6)
{
// Error: h^6f^(7)(x)/140 + 5|f(x)|eps/h
Real h = pow(eps/168, (Real) 1/ (Real) 7);
Real temp = x + h;
h = temp - x;
if (h == 0)
{
h = nextafter(x, std::numeric_limits<Real>::max()) - x;
}
Real yh = f(x+h);
Real ymh = f(x-h);
Real y1 = yh - ymh;
Real y2 = f(x-2*h) - f(x + 2*h);
Real y3 = f(x+3*h) - f(x - 3*h);
if (error)
{
// Mathematica code to generate fd scheme for 7th derivative:
// Sum[(-1)^i*Binomial[7, i]*(f[x+(3-i)*h] + f[x+(4-i)*h])/2, {i, 0, 7}]
// Mathematica to demonstrate that this is a finite difference formula for 7th derivative:
// Series[(f[x+4*h]-f[x-4*h] + 6*(f[x-3*h] - f[x+3*h]) + 14*(f[x-h] - f[x+h] + f[x+2*h] - f[x-2*h]))/2, {h, 0, 15}]
Real y7 = half<Real>()*(f(x+4*h) - f(x-4*h) - 6*y3 - 14*y1 - 14*y2);
*error = abs(y7)/(140*h) + 5*(abs(yh) + abs(ymh))*eps/h;
}
return (y3 + 9*y2 + 45*y1)/(60*h);
}
// Error bound ~eps^8/9.
// In double precision, we only expect to lose two digits of precision while using this formula, at the cost of 8 function evaluations.
if (order == 8)
{
// Error: h^8|f^(9)(x)|/630 + 7|f(x)|eps/h assuming 7 unstabilized additions.
// Mathematica code to get the error:
// Series[(f[x+h]-f[x-h])*(4/5) + (1/5)*(f[x-2*h] - f[x+2*h]) + (4/105)*(f[x+3*h] - f[x-3*h]) + (1/280)*(f[x-4*h] - f[x+4*h]), {h, 0, 9}]
// If we used Kahan summation, we could get the max error down to h^8|f^(9)(x)|/630 + |f(x)|eps/h.
Real h = pow(551.25*eps, (Real)1 / (Real) 9);
Real temp = x + h;
h = temp - x;
if (h == 0)
{
h = nextafter(x, std::numeric_limits<Real>::max()) - x;
}
Real yh = f(x+h);
Real ymh = f(x-h);
Real y1 = yh - ymh;
Real y2 = f(x-2*h) - f(x + 2*h);
Real y3 = f(x+3*h) - f(x - 3*h);
Real y4 = f(x-4*h) - f(x + 4*h);
Real tmp1 = 3*y4/8 + 4*y3;
Real tmp2 = 21*y2 + 84*y1;
if (error)
{
// Mathematica code to generate fd scheme for 7th derivative:
// Sum[(-1)^i*Binomial[9, i]*(f[x+(4-i)*h] + f[x+(5-i)*h])/2, {i, 0, 9}]
// Mathematica to demonstrate that this is a finite difference formula for 7th derivative:
// Series[(f[x+5*h]-f[x- 5*h])/2 + 4*(f[x-4*h] - f[x+4*h]) + 27*(f[x+3*h] - f[x-3*h])/2 + 24*(f[x-2*h] - f[x+2*h]) + 21*(f[x+h] - f[x-h]), {h, 0, 15}]
Real f9 = (f(x+5*h) - f(x-5*h))*half<Real>() + 4*y4 + 27*half<Real>()*y3 + 24*y2 + 21*y1;
*error = abs(f9)/(630*h) + 7*(abs(yh)+abs(ymh))*eps/h;
}
return (tmp1 + tmp2)/(105*h);
}
throw std::logic_error("Order higher than 8 is not implemented.\n");
}
}}}
#endif