mirror of
https://github.com/boostorg/math.git
synced 2026-02-13 12:32:15 +00:00
Numerical differentiation by finite differences and the complex step derivative.
This commit is contained in:
234
include/boost/math/tools/numerical_differentiation.hpp
Normal file
234
include/boost/math/tools/numerical_differentiation.hpp
Normal file
@@ -0,0 +1,234 @@
|
||||
#ifndef BOOST_MATH_TOOLS_NUMERICAL_DIFFERENTIATION_HPP
|
||||
#define BOOST_MATH_TOOLS_NUMERICAL_DIFFERENTIATION_HPP
|
||||
|
||||
/*
|
||||
* Performs numerical differentiation by finite-differences.
|
||||
*
|
||||
* All numerical differentiation using finite-differences are ill-conditioned, and these routines are no exception.
|
||||
* A simple argument demonstrates that the error is unbounded as h->0.
|
||||
* Take the one sides finite difference formula f'(x) = (f(x+h)-f(x))/h.
|
||||
* The evaluation of f induces an error as well as the error from the finite-difference approximation, giving
|
||||
* |f'(x) - (f(x+h) -f(x))/h| < h|f''(x)|/2 + (|f(x)|+|f(x+h)|)eps/h =: g(h), where eps is the unit roundoff for the type.
|
||||
* It is reasonable to choose h in a way that minimizes the maximum error bound g(h).
|
||||
* The value of h that minimizes g is h = sqrt(2eps(|f(x)| + |f(x+h)|)/|f''(x)|), and for this value of h the error bound is
|
||||
* sqrt(2eps(|f(x+h) +f(x)||f''(x)|)).
|
||||
* In fact it is not necessary to compute the ratio (|f(x+h)| + |f(x)|)/|f''(x)|; the error bound of ~\sqrt{\epsilon} still holds if we set it to one.
|
||||
*
|
||||
* However, this analysis holds under the assumption that f can be computed within 1 ULP for any x.
|
||||
* This is often incorrect, so in the computation of the error we assume more generously that the function can be evaluated to within \pm 3 ULP.
|
||||
*
|
||||
*
|
||||
* For more details on this method of analysis, see
|
||||
*
|
||||
* http://www.uio.no/studier/emner/matnat/math/MAT-INF1100/h08/kompendiet/diffint.pdf
|
||||
* http://web.archive.org/web/20150420195907/http://www.uio.no/studier/emner/matnat/math/MAT-INF1100/h08/kompendiet/diffint.pdf
|
||||
*
|
||||
*
|
||||
* It can be shown on general grounds that when choosing the optimal h, the maximum error in f'(x) is ~(|f(x)|eps)^k/k+1|f^(k-1)(x)|^1/k+1.
|
||||
* From this we can see that full precision can be recovered in the limit k->infinity.
|
||||
*
|
||||
* References:
|
||||
*
|
||||
* 1) Fornberg, Bengt. "Generation of finite difference formulas on arbitrarily spaced grids." Mathematics of computation 51.184 (1988): 699-706.
|
||||
*
|
||||
*
|
||||
* The second algorithm is, IMO, miraculous. However, it requires that your function can be evaluated at complex arguments.
|
||||
* The idea is that f(x+ih) = f(x) +ihf'(x) - h^2f''(x) + ... so f'(x) \approx Im[f(x+ih)]/h.
|
||||
* No subtractive cancellation occurs. The error is ~ eps|f'(x)| + eps^2|f'''(x)|/6; hard to beat that.
|
||||
*
|
||||
* References:
|
||||
*
|
||||
* 1) Squire, William, and George Trapp. "Using complex variables to estimate derivatives of real functions." Siam Review 40.1 (1998): 110-112.
|
||||
*/
|
||||
|
||||
#include <complex>
|
||||
#include <boost/math/constants/constants.hpp>
|
||||
|
||||
namespace boost { namespace math { namespace tools {
|
||||
|
||||
template<class F, class Real>
|
||||
Real complex_step_derivative(const F f, Real x)
|
||||
{
|
||||
// Is it really this easy? Yes.
|
||||
// Note that some authors recommend taking the stepsize h to be smaller than epsilon(), some recommending use of the min().
|
||||
// This idea was tested over a few billion test cases and found the make the error *much* worse.
|
||||
// Even 2eps and eps/2 made the error worse, which was surprising.
|
||||
using std::complex;
|
||||
constexpr const Real step = std::numeric_limits<Real>::epsilon();
|
||||
constexpr const Real inv_step = 1/std::numeric_limits<Real>::epsilon();
|
||||
return f(complex<Real>(x, step)).imag()*inv_step;
|
||||
}
|
||||
|
||||
template<class F, class Real, size_t order=6>
|
||||
Real finite_difference_derivative(const F f, Real x, Real* error = nullptr)
|
||||
{
|
||||
static_assert(order == 1 || order == 2 || order == 4 || order == 6 || order == 8,
|
||||
"Order of accuracy must be one of 1, 2, 4, 6, or 8.\n");
|
||||
|
||||
using std::sqrt;
|
||||
using std::pow;
|
||||
using std::abs;
|
||||
using std::max;
|
||||
using std::nextafter;
|
||||
using boost::math::constants::half;
|
||||
|
||||
const Real eps = std::numeric_limits<Real>::epsilon();
|
||||
// TODO: static if in C++17!
|
||||
// Error bound ~eps^1/2
|
||||
if (order == 1)
|
||||
{
|
||||
// Note that this estimate of h differs from the best estimate by a factor of sqrt((|f(x)| + |f(x+h)|)/|f''(x)|).
|
||||
// Since this factor is invariant under the scaling f -> kf, then we are somewhat justified in approximating it by 1.
|
||||
// This approximation will get better as we move to higher orders of accuracy.
|
||||
Real h = 2*sqrt(eps);
|
||||
|
||||
// Redefine h so that x + h is representable. Not using this trick leads to large error.
|
||||
// The compiler flag -ffast-math evaporates these operations . . .
|
||||
Real temp = x + h;
|
||||
h = temp - x;
|
||||
// Handle the case x + h == x:
|
||||
if (h == 0)
|
||||
{
|
||||
h = nextafter(x, std::numeric_limits<Real>::max()) - x;
|
||||
}
|
||||
Real yh = f(x+h);
|
||||
Real y0 = f(x);
|
||||
Real diff = yh - y0;
|
||||
if (error)
|
||||
{
|
||||
Real ym = f(x-h);
|
||||
Real ypph = abs(yh - 2*y0 + ym)/h;
|
||||
// h*|f''(x)|*0.5 + (|f(x+h)+|f(x)|)*3*eps/h, where 3 allows for the function to be evaluated to \pm 3 ULP.
|
||||
*error = ypph*half<Real>() + (abs(yh) + abs(y0))*3*eps/h;
|
||||
}
|
||||
return diff/h;
|
||||
}
|
||||
|
||||
// Error bound ~eps^2/3
|
||||
if (order == 2)
|
||||
{
|
||||
// See the previous discussion to understand determination of h and the error bound.
|
||||
// Series[(f[x+h] - f[x-h])/(2*h), {h, 0, 4}]
|
||||
Real h = pow(3*eps, boost::math::constants::third<Real>());
|
||||
Real temp = x + h;
|
||||
h = temp - x;
|
||||
if (h == 0)
|
||||
{
|
||||
h = nextafter(x, std::numeric_limits<Real>::max()) - x;
|
||||
}
|
||||
Real yh = f(x+h);
|
||||
Real ymh = f(x-h);
|
||||
Real diff = yh - ymh;
|
||||
if (error)
|
||||
{
|
||||
Real yth = f(x+2*h);
|
||||
Real ymth = f(x-2*h);
|
||||
*error = 3*eps*(abs(yh) + abs(ymh))/(2*h) + abs((yth - ymth)*half<Real>() - diff)/(6*h);
|
||||
}
|
||||
|
||||
return diff/(2*h);
|
||||
}
|
||||
|
||||
// Error bound ~eps^4/5
|
||||
if (order == 4)
|
||||
{
|
||||
Real h = pow(11.25*eps, (Real) 1/ (Real) 5);
|
||||
Real temp = x + h;
|
||||
h = temp - x;
|
||||
if (h == 0)
|
||||
{
|
||||
h = nextafter(x, std::numeric_limits<Real>::max()) - x;
|
||||
}
|
||||
Real ymth = f(x-2*h);
|
||||
Real yth = f(x+2*h);
|
||||
Real yh = f(x+h);
|
||||
Real ymh = f(x-h);
|
||||
Real y2 = ymth - yth;
|
||||
Real y1 = yh - ymh;
|
||||
if (error)
|
||||
{
|
||||
// Mathematica code to extrace the remainder:
|
||||
// Series[(f[x-2*h]+ 8*f[x+h] - 8*f[x-h] - f[x+2*h])/(12*h), {h, 0, 7}]
|
||||
Real y_three_h = f(x+3*h);
|
||||
Real y_m_three_h = f(x-3*h);
|
||||
// Error from fifth derivative:
|
||||
*error = abs(half<Real>()*(y_three_h - y_m_three_h) + 2*(ymth - yth) + 5*half<Real>()*(yh - ymh) )/(30*h);
|
||||
// Error from function evaluation, assuming 3ULP:
|
||||
*error += 3*eps*(abs(yth) + abs(ymth) + 8*(abs(ymh) + abs(yh)))/(12*h);
|
||||
}
|
||||
return (y2+8*y1)/(12*h);
|
||||
}
|
||||
|
||||
// Error bound ~eps^6/7
|
||||
if (order == 6)
|
||||
{
|
||||
// Error: h^6f^(7)(x)/140 + 5|f(x)|eps/h
|
||||
Real h = pow(eps/168, (Real) 1/ (Real) 7);
|
||||
Real temp = x + h;
|
||||
h = temp - x;
|
||||
if (h == 0)
|
||||
{
|
||||
h = nextafter(x, std::numeric_limits<Real>::max()) - x;
|
||||
}
|
||||
|
||||
Real yh = f(x+h);
|
||||
Real ymh = f(x-h);
|
||||
Real y1 = yh - ymh;
|
||||
Real y2 = f(x-2*h) - f(x + 2*h);
|
||||
Real y3 = f(x+3*h) - f(x - 3*h);
|
||||
|
||||
if (error)
|
||||
{
|
||||
// Mathematica code to generate fd scheme for 7th derivative:
|
||||
// Sum[(-1)^i*Binomial[7, i]*(f[x+(3-i)*h] + f[x+(4-i)*h])/2, {i, 0, 7}]
|
||||
// Mathematica to demonstrate that this is a finite difference formula for 7th derivative:
|
||||
// Series[(f[x+4*h]-f[x-4*h] + 6*(f[x-3*h] - f[x+3*h]) + 14*(f[x-h] - f[x+h] + f[x+2*h] - f[x-2*h]))/2, {h, 0, 15}]
|
||||
Real y7 = half<Real>()*(f(x+4*h) - f(x-4*h) - 6*y3 - 14*y1 - 14*y2);
|
||||
*error = abs(y7)/(140*h) + 5*(abs(yh) + abs(ymh))*eps/h;
|
||||
}
|
||||
return (y3 + 9*y2 + 45*y1)/(60*h);
|
||||
}
|
||||
|
||||
// Error bound ~eps^8/9.
|
||||
// In double precision, we only expect to lose two digits of precision while using this formula, at the cost of 8 function evaluations.
|
||||
if (order == 8)
|
||||
{
|
||||
// Error: h^8|f^(9)(x)|/630 + 7|f(x)|eps/h assuming 7 unstabilized additions.
|
||||
// Mathematica code to get the error:
|
||||
// Series[(f[x+h]-f[x-h])*(4/5) + (1/5)*(f[x-2*h] - f[x+2*h]) + (4/105)*(f[x+3*h] - f[x-3*h]) + (1/280)*(f[x-4*h] - f[x+4*h]), {h, 0, 9}]
|
||||
// If we used Kahan summation, we could get the max error down to h^8|f^(9)(x)|/630 + |f(x)|eps/h.
|
||||
Real h = pow(551.25*eps, (Real)1 / (Real) 9);
|
||||
Real temp = x + h;
|
||||
h = temp - x;
|
||||
if (h == 0)
|
||||
{
|
||||
h = nextafter(x, std::numeric_limits<Real>::max()) - x;
|
||||
}
|
||||
|
||||
Real yh = f(x+h);
|
||||
Real ymh = f(x-h);
|
||||
Real y1 = yh - ymh;
|
||||
Real y2 = f(x-2*h) - f(x + 2*h);
|
||||
Real y3 = f(x+3*h) - f(x - 3*h);
|
||||
Real y4 = f(x-4*h) - f(x + 4*h);
|
||||
|
||||
Real tmp1 = 3*y4/8 + 4*y3;
|
||||
Real tmp2 = 21*y2 + 84*y1;
|
||||
|
||||
if (error)
|
||||
{
|
||||
// Mathematica code to generate fd scheme for 7th derivative:
|
||||
// Sum[(-1)^i*Binomial[9, i]*(f[x+(4-i)*h] + f[x+(5-i)*h])/2, {i, 0, 9}]
|
||||
// Mathematica to demonstrate that this is a finite difference formula for 7th derivative:
|
||||
// Series[(f[x+5*h]-f[x- 5*h])/2 + 4*(f[x-4*h] - f[x+4*h]) + 27*(f[x+3*h] - f[x-3*h])/2 + 24*(f[x-2*h] - f[x+2*h]) + 21*(f[x+h] - f[x-h]), {h, 0, 15}]
|
||||
Real f9 = (f(x+5*h) - f(x-5*h))*half<Real>() + 4*y4 + 27*half<Real>()*y3 + 24*y2 + 21*y1;
|
||||
*error = abs(f9)/(630*h) + 7*(abs(yh)+abs(ymh))*eps/h;
|
||||
}
|
||||
return (tmp1 + tmp2)/(105*h);
|
||||
}
|
||||
|
||||
throw std::logic_error("Order higher than 8 is not implemented.\n");
|
||||
}
|
||||
|
||||
}}}
|
||||
#endif
|
||||
Reference in New Issue
Block a user