2
0
mirror of https://github.com/boostorg/math.git synced 2026-02-13 00:22:23 +00:00

Zeros of Legendre polynomials. This uses a root bracketing given by Szego with an asymptotic by Tricomi to get a domain and an initial guess for the root, then refines it via Newton's method.

This commit is contained in:
Nick Thompson
2017-04-14 15:51:39 -05:00
parent 21bcf34a51
commit 4110a69416
5 changed files with 227 additions and 1 deletions

View File

@@ -222,4 +222,13 @@ BOOST_AUTO_TEST_CASE( test_main )
test_legendre_p_prime<float>();
test_legendre_p_prime<double>();
test_legendre_p_prime<long double>();
int distance = test_legendre_p_zeros_double_ulp(1, 107);
BOOST_CHECK(distance <= 1);
// This test is very expensive; the total runtime grows cubically with n.
//distance = test_legendre_p_zeros_double_ulp(108, 350);
//BOOST_CHECK(distance <= 2);
test_legendre_p_zeros<float>();
test_legendre_p_zeros<double>();
test_legendre_p_zeros<long double>();
}

View File

@@ -15,6 +15,7 @@
#include <boost/math/special_functions/math_fwd.hpp>
#include <boost/math/special_functions/legendre.hpp>
#include <boost/math/constants/constants.hpp>
#include <boost/multiprecision/cpp_bin_float.hpp>
#include <boost/array.hpp>
#include "functor.hpp"
@@ -258,3 +259,81 @@ void test_legendre_p_prime()
++n;
}
}
template<class Real>
void test_legendre_p_zeros()
{
using std::sqrt;
using std::abs;
using boost::math::legendre_p_zeros;
using boost::math::legendre_p;
Real tol = std::numeric_limits<Real>::epsilon();
// Check the trivial cases:
BOOST_CHECK_CLOSE_FRACTION(legendre_p_zeros<Real>(2, 0), (Real) 1/ sqrt(3), tol);
// The first zero of the odd Legendre Polynomials is obviously zero.
for (int n = 1; n < 5000; n += 2)
{
BOOST_CHECK_SMALL(legendre_p_zeros<Real>(n, 0), tol);
}
// Don't take the tolerances too seriously.
// The other test shows that the zeros are estimated more accurately than the function!
for (int n = 1; n < 130; ++n)
{
Real previous_zero = legendre_p_zeros<Real>(n, 0);
if (!(n & 1))
{
// Zero is not a zero of the odd Legendre polynomials
BOOST_CHECK(previous_zero > 0);
BOOST_CHECK_SMALL(legendre_p(n, previous_zero), 550*tol);
}
for (int k = 1; k < ceil(n*boost::math::constants::half<Real>()); ++k)
{
Real next_zero = legendre_p_zeros<Real>(n, k);
BOOST_CHECK(next_zero > previous_zero);
std::string err = "Tolerance failed for (n, k) = (" + std::to_string(n) + "," + std::to_string(k) + ")\n";
if (n < 40)
{
BOOST_CHECK_MESSAGE( abs(legendre_p(n, next_zero)) < 100*tol,
err);
}
else
{
BOOST_CHECK_MESSAGE( abs(legendre_p(n, next_zero)) < 1000*tol,
err);
}
previous_zero = next_zero;
}
// The zeros of orthogonal polynomials are contained strictly in (a, b).
BOOST_CHECK(previous_zero < 1);
}
return;
}
int test_legendre_p_zeros_double_ulp(int min_x, int max_n)
{
using std::abs;
using boost::math::legendre_p_zeros;
using boost::math::float_distance;
using boost::multiprecision::cpp_bin_float_quad;
double max_float_distance = 0;
for (int n = min_x; n < max_n; ++n)
{
for (int k = 1; k < ceil(n*boost::math::constants::half<double>()); ++k)
{
double double_zero = legendre_p_zeros<double>(n, k);
cpp_bin_float_quad quad_zero = legendre_p_zeros<cpp_bin_float_quad>(n, k);
double d = abs(float_distance(double_zero, (double) quad_zero));
if (d > max_float_distance)
{
max_float_distance = d;
}
}
}
return (int) max_float_distance;
}