2
0
mirror of https://github.com/boostorg/math.git synced 2026-02-13 00:22:23 +00:00

Fixed gcc 3.2 and 3.3 build issues, tests still fail on cygwin, but pass on linux and mingw32 (seems to be a numeric_limits issue).

[SVN r21433]
This commit is contained in:
John Maddock
2003-12-31 12:04:45 +00:00
parent f38e44f5c3
commit 2fbd58f0db
3 changed files with 52 additions and 49 deletions

View File

@@ -15,15 +15,14 @@
#include <iosfwd> // for the "<<" and ">>" operators
#include <sstream> // for the "<<" operator
#ifdef BOOST_NO_STD_LOCALE
#else
#include <boost/config.hpp> // for BOOST_NO_STD_LOCALE
#ifndef BOOST_NO_STD_LOCALE
#include <locale> // for the "<<" operator
#endif /* BOOST_NO_STD_LOCALE */
#include <valarray>
#include <boost/config.hpp>
#include <boost/math/special_functions/sinc.hpp> // for the Sinus cardinal
#include <boost/math/special_functions/sinhc.hpp> // for the Hyperbolic Sinus cardinal

View File

@@ -12,7 +12,7 @@
#include <cmath>
#include <limits>
#include <boost/limits.hpp>
#include <string>
#include <stdexcept>
@@ -29,16 +29,16 @@ namespace boost
#if defined(__GNUC__) && (__GNUC__ < 3)
// gcc 2.x ignores function scope using declarations,
// put them in the scope of the enclosing namespace instead:
using ::std::abs;
using ::std::sqrt;
using ::std::sin;
using ::std::numeric_limits;
#endif /* defined(__GNUC__) && (__GNUC__ < 3) */
// This is the "Sinus Cardinal" of index Pi.
template<typename T>
inline T sinc_pi(const T x)
{
@@ -51,13 +51,13 @@ namespace boost
using ::std::sin;
using ::std::sqrt;
#endif /* BOOST_NO_STDC_NAMESPACE */
using ::std::numeric_limits;
static T const taylor_0_bound = numeric_limits<T>::epsilon();
static T const taylor_2_bound = sqrt(taylor_0_bound);
static T const taylor_n_bound = sqrt(taylor_2_bound);
if (abs(x) >= taylor_n_bound)
{
return(sin(x)/x);
@@ -66,32 +66,34 @@ namespace boost
{
// approximation by taylor series in x at 0 up to order 0
T result = static_cast<T>(1);
if (abs(x) >= taylor_0_bound)
{
T x2 = x*x;
// approximation by taylor series in x at 0 up to order 2
result -= x2/static_cast<T>(6);
if (abs(x) >= taylor_2_bound)
{
// approximation by taylor series in x at 0 up to order 4
result += (x2*x2)/static_cast<T>(120);
}
}
return(result);
}
}
#ifdef BOOST_NO_TEMPLATE_TEMPLATES
#else /* BOOST_NO_TEMPLATE_TEMPLATES */
template<typename T, template<typename> class U>
inline U<T> sinc_pi(const U<T> x)
{
#ifdef BOOST_NO_STDC_NAMESPACE
#if defined(BOOST_FUNCTION_SCOPE_USING_DECLARATION_BREAKS_ADL) || defined(__GNUC__)
using namespace std;
#elif defined(BOOST_NO_STDC_NAMESPACE)
using ::abs;
using ::sin;
using ::sqrt;
@@ -100,13 +102,13 @@ namespace boost
using ::std::sin;
using ::std::sqrt;
#endif /* BOOST_NO_STDC_NAMESPACE */
using ::std::numeric_limits;
static T const taylor_0_bound = numeric_limits<T>::epsilon();
static T const taylor_2_bound = sqrt(taylor_0_bound);
static T const taylor_n_bound = sqrt(taylor_2_bound);
if (abs(x) >= taylor_n_bound)
{
return(sin(x)/x);
@@ -114,22 +116,22 @@ namespace boost
else
{
// approximation by taylor series in x at 0 up to order 0
U<T> result = static_cast< U<T> >(1);
U<T> result = U<T>(1);
if (abs(x) >= taylor_0_bound)
{
U<T> x2 = x*x;
// approximation by taylor series in x at 0 up to order 2
result -= x2/static_cast<T>(6);
if (abs(x) >= taylor_2_bound)
{
// approximation by taylor series in x at 0 up to order 4
result += (x2*x2)/static_cast<T>(120);
}
}
return(result);
}
}

View File

@@ -12,7 +12,7 @@
#include <cmath>
#include <limits>
#include <boost/limits.hpp>
#include <string>
#include <stdexcept>
@@ -29,16 +29,16 @@ namespace boost
#if defined(__GNUC__) && (__GNUC__ < 3)
// gcc 2.x ignores function scope using declarations,
// put them in the scope of the enclosing namespace instead:
using ::std::abs;
using ::std::sqrt;
using ::std::sinh;
using ::std::numeric_limits;
#endif /* defined(__GNUC__) && (__GNUC__ < 3) */
// This is the "Hyperbolic Sinus Cardinal" of index Pi.
template<typename T>
inline T sinhc_pi(const T x)
{
@@ -51,13 +51,13 @@ namespace boost
using ::std::sinh;
using ::std::sqrt;
#endif /* BOOST_NO_STDC_NAMESPACE */
using ::std::numeric_limits;
static T const taylor_0_bound = numeric_limits<T>::epsilon();
static T const taylor_2_bound = sqrt(taylor_0_bound);
static T const taylor_n_bound = sqrt(taylor_2_bound);
if (abs(x) >= taylor_n_bound)
{
return(sinh(x)/x);
@@ -66,32 +66,34 @@ namespace boost
{
// approximation by taylor series in x at 0 up to order 0
T result = static_cast<T>(1);
if (abs(x) >= taylor_0_bound)
{
T x2 = x*x;
// approximation by taylor series in x at 0 up to order 2
result += x2/static_cast<T>(6);
if (abs(x) >= taylor_2_bound)
{
// approximation by taylor series in x at 0 up to order 4
result += (x2*x2)/static_cast<T>(120);
}
}
return(result);
}
}
#ifdef BOOST_NO_TEMPLATE_TEMPLATES
#else /* BOOST_NO_TEMPLATE_TEMPLATES */
template<typename T, template<typename> class U>
inline U<T> sinhc_pi(const U<T> x)
{
#ifdef BOOST_NO_STDC_NAMESPACE
#if defined(BOOST_FUNCTION_SCOPE_USING_DECLARATION_BREAKS_ADL) || defined(__GNUC__)
using namespace std;
#elif defined(BOOST_NO_STDC_NAMESPACE)
using ::abs;
using ::sinh;
using ::sqrt;
@@ -100,13 +102,13 @@ namespace boost
using ::std::sinh;
using ::std::sqrt;
#endif /* BOOST_NO_STDC_NAMESPACE */
using ::std::numeric_limits;
static T const taylor_0_bound = numeric_limits<T>::epsilon();
static T const taylor_2_bound = sqrt(taylor_0_bound);
static T const taylor_n_bound = sqrt(taylor_2_bound);
if (abs(x) >= taylor_n_bound)
{
return(sinh(x)/x);
@@ -114,22 +116,22 @@ namespace boost
else
{
// approximation by taylor series in x at 0 up to order 0
U<T> result = static_cast< U<T> >(1);
U<T> result = U<T>(1);
if (abs(x) >= taylor_0_bound)
{
U<T> x2 = x*x;
// approximation by taylor series in x at 0 up to order 2
result += x2/static_cast<T>(6);
if (abs(x) >= taylor_2_bound)
{
// approximation by taylor series in x at 0 up to order 4
result += (x2*x2)/static_cast<T>(120);
}
}
return(result);
}
}