From 0c273d09a98a0d4c88218de3d8fbe1d60b619297 Mon Sep 17 00:00:00 2001
From: Lauri Nurmi
double alpha = 0.05; -double k = 100; // So frequency of occurence is 1/100. +double k = 100; // So frequency of occurrence is 1/100. cout << "Probability is failure is " << 1/k << endl; double t = geometric::find_lower_bound_on_p(k, alpha/2); cout << "geometric::find_lower_bound_on_p(" << int(k) << ", " << alpha/2 << ") = " diff --git a/doc/html/math_toolkit/stat_tut/weg/neg_binom_eg/neg_binom_conf.html b/doc/html/math_toolkit/stat_tut/weg/neg_binom_eg/neg_binom_conf.html index 0082c1578..3098af560 100644 --- a/doc/html/math_toolkit/stat_tut/weg/neg_binom_eg/neg_binom_conf.html +++ b/doc/html/math_toolkit/stat_tut/weg/neg_binom_eg/neg_binom_conf.html @@ -74,7 +74,7 @@
Confidence value as % is (1 - alpha) * 100, so alpha 0.05 == 95% confidence - that the true occurence frequency lies inside + that the true occurrence frequency lies inside the calculated interval.
diff --git a/example/geometric_examples.cpp b/example/geometric_examples.cpp
index 903a8987d..14dbe9eb4 100644
--- a/example/geometric_examples.cpp
+++ b/example/geometric_examples.cpp
@@ -262,7 +262,7 @@ If we chose the popular 95% confidence in the limits, corresponding to an alpha
because we are calculating a two-sided interval, we must divide alpha by two.
*/
double alpha = 0.05;
- double k = 100; // So frequency of occurence is 1/100.
+ double k = 100; // So frequency of occurrence is 1/100.
cout << "Probability is failure is " << 1/k << endl;
double t = geometric::find_lower_bound_on_p(k, alpha/2);
cout << "geometric::find_lower_bound_on_p(" << int(k) << ", " << alpha/2 << ") = "
diff --git a/example/neg_binom_confidence_limits.cpp b/example/neg_binom_confidence_limits.cpp
index 4cb11a3d7..6cca70cb6 100644
--- a/example/neg_binom_confidence_limits.cpp
+++ b/example/neg_binom_confidence_limits.cpp
@@ -38,7 +38,7 @@ interval:
/*`
Confidence value as % is (1 - alpha) * 100, so alpha 0.05 == 95% confidence
-that the true occurence frequency lies *inside* the calculated interval.
+that the true occurrence frequency lies *inside* the calculated interval.
We need a function to calculate and print confidence limits
for an observed frequency of occurrence
diff --git a/include/boost/math/special_functions/detail/bernoulli_details.hpp b/include/boost/math/special_functions/detail/bernoulli_details.hpp
index f2d3c655c..525c1fccf 100644
--- a/include/boost/math/special_functions/detail/bernoulli_details.hpp
+++ b/include/boost/math/special_functions/detail/bernoulli_details.hpp
@@ -625,7 +625,7 @@ private:
//
fixed_vector