diff --git a/include/boost/math/tools/cohen_acceleration.hpp b/include/boost/math/tools/cohen_acceleration.hpp index e95fe3df8..716245f72 100644 --- a/include/boost/math/tools/cohen_acceleration.hpp +++ b/include/boost/math/tools/cohen_acceleration.hpp @@ -12,7 +12,7 @@ namespace boost::math::tools { // Algorithm 1 of https://people.mpim-bonn.mpg.de/zagier/files/exp-math-9/fulltext.pdf -// Convergence Acceleration of Alternating Series: Henri Cohen, Fernando Rodriguez Villegas, and Don Zagier +// Convergence Acceleration of Alternating Series: Henri Cohen, Fernando Rodriguez Villegas, and Don Zagier template auto cohen_acceleration(G& generator, std::int64_t n = -1) { @@ -23,16 +23,16 @@ auto cohen_acceleration(G& generator, std::int64_t n = -1) using std::pow; using std::ceil; using std::sqrt; - Real n_ = n; + auto n_ = static_cast(n); if (n < 0) { // relative error grows as 2*5.828^-n; take 5.828^-n < eps/4 => -nln(5.828) < ln(eps/4) => n > ln(4/eps)/ln(5.828). // Is there a way to do it rapidly with std::log2? (Yes, of course; but for primitive types it's computed at compile-time anyway.) - n_ = ceil(log(4/std::numeric_limits::epsilon())*0.5672963285532555); + n_ = static_cast(ceil(log(4/std::numeric_limits::epsilon())*0.5672963285532555)); n = static_cast(n_); } // d can get huge and overflow if you pick n too large: - Real d = pow(3 + sqrt(Real(8)), n); + auto d = static_cast(pow(3 + sqrt(Real(8)), n)); d = (d + 1/d)/2; Real b = -1; Real c = -d;