2
0
mirror of https://github.com/boostorg/math.git synced 2026-01-19 04:22:09 +00:00

Merge pull request #1346 from JacobHass8/asym-log-incomplete-gamma

Implement special function log incomplete gamma function
This commit is contained in:
jzmaddock
2026-01-09 12:55:44 +00:00
committed by GitHub
10 changed files with 366 additions and 6 deletions

View File

@@ -20,6 +20,12 @@
template <class T1, class T2, class ``__Policy``> template <class T1, class T2, class ``__Policy``>
BOOST_MATH_GPU_ENABLED ``__sf_result`` gamma_q(T1 a, T2 z, const ``__Policy``&); BOOST_MATH_GPU_ENABLED ``__sf_result`` gamma_q(T1 a, T2 z, const ``__Policy``&);
template <class T1, class T2>
BOOST_MATH_GPU_ENABLED ``__sf_result`` lgamma_q(T1 a, T2 z);
template <class T1, class T2, class ``__Policy``>
BOOST_MATH_GPU_ENABLED ``__sf_result`` lgamma_q(T1 a, T2 z, const ``__Policy``&);
template <class T1, class T2> template <class T1, class T2>
BOOST_MATH_GPU_ENABLED ``__sf_result`` tgamma_lower(T1 a, T2 z); BOOST_MATH_GPU_ENABLED ``__sf_result`` tgamma_lower(T1 a, T2 z);
@@ -80,6 +86,15 @@ This function changes rapidly from 1 to 0 around the point z == a:
[graph gamma_q] [graph gamma_q]
template <class T1, class T2>
BOOST_MATH_GPU_ENABLED ``__sf_result`` lgamma_q(T1 a, T2 z);
template <class T1, class T2, class ``__Policy``>
BOOST_MATH_GPU_ENABLED ``__sf_result`` lgamma_q(T1 a, T2 z, const ``__Policy``&);
Returns the natural log of the normalized upper incomplete gamma function
of a and z.
template <class T1, class T2> template <class T1, class T2>
BOOST_MATH_GPU_ENABLED ``__sf_result`` tgamma_lower(T1 a, T2 z); BOOST_MATH_GPU_ENABLED ``__sf_result`` tgamma_lower(T1 a, T2 z);
@@ -263,6 +278,16 @@ large a and x the errors will still get you eventually, although this does
delay the inevitable much longer than other methods. Use of /log(1+x)-x/ here delay the inevitable much longer than other methods. Use of /log(1+x)-x/ here
is inspired by Temme (see references below). is inspired by Temme (see references below).
The natural log of the normalized upper incomplete gamma function is computed
as expected except when the normalized upper incomplete gamma function
begins to underflow. This approximately occurs at
((x > 1000) && ((a < x) || (fabs(a - 50) / x < 1))) || ((x > log_max_value<T>() - 10) && (x > a))
in which case an expansion, for large x, of the (non-normalised) upper
incomplete gamma function is used. The return is then normalised by subtracting
the log of the gamma function and adding /a log(x)-x-log(x)/.
[h4 References] [h4 References]
* N. M. Temme, A Set of Algorithms for the Incomplete Gamma Functions, * N. M. Temme, A Set of Algorithms for the Incomplete Gamma Functions,

View File

@@ -1772,6 +1772,47 @@ BOOST_MATH_GPU_ENABLED T gamma_incomplete_imp(T a, T x, bool normalised, bool in
return gamma_incomplete_imp_final(T(a), T(x), normalised, invert, pol, p_derivative); return gamma_incomplete_imp_final(T(a), T(x), normalised, invert, pol, p_derivative);
} }
// Calculate log of incomplete gamma function
template <class T, class Policy>
BOOST_MATH_GPU_ENABLED T lgamma_incomplete_imp(T a, T x, const Policy& pol)
{
using namespace boost::math; // temporary until we're in the right namespace
BOOST_MATH_STD_USING_CORE
// Check for invalid inputs (a < 0 or x < 0)
constexpr auto function = "boost::math::lgamma_q<%1%>(%1%, %1%)";
if(a <= 0)
return policies::raise_domain_error<T>(function, "Argument a to the incomplete gamma function must be greater than zero (got a=%1%).", a, pol);
if(x < 0)
return policies::raise_domain_error<T>(function, "Argument x to the incomplete gamma function must be >= 0 (got x=%1%).", x, pol);
if (((x > 1000) || (x > tools::log_max_value<T>() - 10)) && (a + 50 < x))
{
//
// Take the logarithmic version of the asymtotic expansion:
//
return log(detail::incomplete_tgamma_large_x(a, x, pol)) + a * log(x) - x - lgamma(a, pol) - log(x);
}
//
// Can't do better than taking the log of Q, but...
//
// Figure out whether we need P or Q, since if we calculate Q and it's too close to unity
// we will lose precision in the result, selection logic here is extracted from gamma_incomplete_imp_final:
//
bool need_p = false;
if ((x < 0.5) && (T(-0.4) / log(x) < a))
need_p = true;
else if ((x < 1.1) && (x >= 0.5) && (x * 0.75f < a))
need_p = true;
else if ((x < a) && (x >= 1.1))
need_p = true;
if (need_p)
return log1p(-gamma_p(a, x, pol), pol);
return log(gamma_q(a, x, pol));
}
// //
// Ratios of two gamma functions: // Ratios of two gamma functions:
// //
@@ -2390,6 +2431,29 @@ BOOST_MATH_GPU_ENABLED inline tools::promote_args_t<T1, T2>
{ {
return gamma_q(a, z, policies::policy<>()); return gamma_q(a, z, policies::policy<>());
} }
template <class T1, class T2, class Policy>
BOOST_MATH_GPU_ENABLED inline tools::promote_args_t<T1, T2> lgamma_q(T1 a, T2 z, const Policy& /* pol */)
{
typedef tools::promote_args_t<T1, T2> result_type;
typedef typename policies::evaluation<result_type, Policy>::type value_type;
typedef typename policies::normalise<
Policy,
policies::promote_float<false>,
policies::promote_double<false>,
policies::discrete_quantile<>,
policies::assert_undefined<> >::type forwarding_policy;
return policies::checked_narrowing_cast<result_type, forwarding_policy>(
detail::lgamma_incomplete_imp(static_cast<value_type>(a),
static_cast<value_type>(z), forwarding_policy()), "lgamma_q<%1%>(%1%, %1%)");
}
template <class T1, class T2>
BOOST_MATH_GPU_ENABLED inline tools::promote_args_t<T1, T2> lgamma_q(T1 a, T2 z)
{
return lgamma_q(a, z, policies::policy<>());
}
// //
// Regularised lower incomplete gamma: // Regularised lower incomplete gamma:
// //

View File

@@ -561,6 +561,12 @@ namespace boost
template <class RT1, class RT2, class Policy> template <class RT1, class RT2, class Policy>
BOOST_MATH_GPU_ENABLED tools::promote_args_t<RT1, RT2> gamma_q(RT1 a, RT2 z, const Policy&); BOOST_MATH_GPU_ENABLED tools::promote_args_t<RT1, RT2> gamma_q(RT1 a, RT2 z, const Policy&);
template <class RT1, class RT2>
BOOST_MATH_GPU_ENABLED tools::promote_args_t<RT1, RT2> lgamma_q(RT1 a, RT2 z);
template <class RT1, class RT2, class Policy>
BOOST_MATH_GPU_ENABLED tools::promote_args_t<RT1, RT2> lgamma_q(RT1 a, RT2 z, const Policy&);
template <class RT1, class RT2> template <class RT1, class RT2>
BOOST_MATH_GPU_ENABLED tools::promote_args_t<RT1, RT2> gamma_p(RT1 a, RT2 z); BOOST_MATH_GPU_ENABLED tools::promote_args_t<RT1, RT2> gamma_p(RT1 a, RT2 z);
@@ -1516,6 +1522,9 @@ namespace boost
\ \
template <class RT1, class RT2>\ template <class RT1, class RT2>\
BOOST_MATH_GPU_ENABLED inline boost::math::tools::promote_args_t<RT1, RT2> gamma_q(RT1 a, RT2 z){ return boost::math::gamma_q(a, z, Policy()); }\ BOOST_MATH_GPU_ENABLED inline boost::math::tools::promote_args_t<RT1, RT2> gamma_q(RT1 a, RT2 z){ return boost::math::gamma_q(a, z, Policy()); }\
\
template <class RT1, class RT2>\
BOOST_MATH_GPU_ENABLED inline boost::math::tools::promote_args_t<RT1, RT2> lgamma_q(RT1 a, RT2 z){ return boost::math::lgamma_q(a, z, Policy()); }\
\ \
template <class RT1, class RT2>\ template <class RT1, class RT2>\
BOOST_MATH_GPU_ENABLED inline boost::math::tools::promote_args_t<RT1, RT2> gamma_p(RT1 a, RT2 z){ return boost::math::gamma_p(a, z, Policy()); }\ BOOST_MATH_GPU_ENABLED inline boost::math::tools::promote_args_t<RT1, RT2> gamma_p(RT1 a, RT2 z){ return boost::math::gamma_p(a, z, Policy()); }\

View File

@@ -263,6 +263,7 @@ void instantiate(RealType)
boost::math::tgamma_lower(v1, v2); boost::math::tgamma_lower(v1, v2);
boost::math::gamma_p(v1, v2); boost::math::gamma_p(v1, v2);
boost::math::gamma_q(v1, v2); boost::math::gamma_q(v1, v2);
boost::math::lgamma_q(v1, v2);
boost::math::gamma_p_inv(v1, v2); boost::math::gamma_p_inv(v1, v2);
boost::math::gamma_q_inv(v1, v2); boost::math::gamma_q_inv(v1, v2);
boost::math::gamma_p_inva(v1, v2); boost::math::gamma_p_inva(v1, v2);
@@ -542,6 +543,7 @@ void instantiate(RealType)
boost::math::tgamma_lower(v1 * 1, v2 - 0); boost::math::tgamma_lower(v1 * 1, v2 - 0);
boost::math::gamma_p(v1 * 1, v2 + 0); boost::math::gamma_p(v1 * 1, v2 + 0);
boost::math::gamma_q(v1 * 1, v2 + 0); boost::math::gamma_q(v1 * 1, v2 + 0);
boost::math::lgamma_q(v1 * 1, v2 + 0);
boost::math::gamma_p_inv(v1 * 1, v2 + 0); boost::math::gamma_p_inv(v1 * 1, v2 + 0);
boost::math::gamma_q_inv(v1 * 1, v2 + 0); boost::math::gamma_q_inv(v1 * 1, v2 + 0);
boost::math::gamma_p_inva(v1 * 1, v2 + 0); boost::math::gamma_p_inva(v1 * 1, v2 + 0);
@@ -793,6 +795,7 @@ void instantiate(RealType)
boost::math::tgamma_lower(v1, v2, pol); boost::math::tgamma_lower(v1, v2, pol);
boost::math::gamma_p(v1, v2, pol); boost::math::gamma_p(v1, v2, pol);
boost::math::gamma_q(v1, v2, pol); boost::math::gamma_q(v1, v2, pol);
boost::math::lgamma_q(v1, v2, pol);
boost::math::gamma_p_inv(v1, v2, pol); boost::math::gamma_p_inv(v1, v2, pol);
boost::math::gamma_q_inv(v1, v2, pol); boost::math::gamma_q_inv(v1, v2, pol);
boost::math::gamma_p_inva(v1, v2, pol); boost::math::gamma_p_inva(v1, v2, pol);
@@ -1070,6 +1073,7 @@ void instantiate(RealType)
test::tgamma_lower(v1, v2); test::tgamma_lower(v1, v2);
test::gamma_p(v1, v2); test::gamma_p(v1, v2);
test::gamma_q(v1, v2); test::gamma_q(v1, v2);
test::lgamma_q(v1, v2);
test::gamma_p_inv(v1, v2); test::gamma_p_inv(v1, v2);
test::gamma_q_inv(v1, v2); test::gamma_q_inv(v1, v2);
test::gamma_p_inva(v1, v2); test::gamma_p_inva(v1, v2);
@@ -1351,6 +1355,7 @@ void instantiate_mixed(RealType)
boost::math::gamma_p(i, s); boost::math::gamma_p(i, s);
boost::math::gamma_p(fr, lr); boost::math::gamma_p(fr, lr);
boost::math::gamma_q(i, s); boost::math::gamma_q(i, s);
boost::math::lgamma_q(i, s);
boost::math::gamma_q(fr, lr); boost::math::gamma_q(fr, lr);
boost::math::gamma_p_inv(i, fr); boost::math::gamma_p_inv(i, fr);
boost::math::gamma_q_inv(s, fr); boost::math::gamma_q_inv(s, fr);
@@ -1566,6 +1571,7 @@ void instantiate_mixed(RealType)
boost::math::gamma_p(i, s, pol); boost::math::gamma_p(i, s, pol);
boost::math::gamma_p(fr, lr, pol); boost::math::gamma_p(fr, lr, pol);
boost::math::gamma_q(i, s, pol); boost::math::gamma_q(i, s, pol);
boost::math::lgamma_q(i, s, pol);
boost::math::gamma_q(fr, lr, pol); boost::math::gamma_q(fr, lr, pol);
boost::math::gamma_p_inv(i, fr, pol); boost::math::gamma_p_inv(i, fr, pol);
boost::math::gamma_q_inv(s, fr, pol); boost::math::gamma_q_inv(s, fr, pol);
@@ -1777,7 +1783,9 @@ void instantiate_mixed(RealType)
test::gamma_p(i, s); test::gamma_p(i, s);
test::gamma_p(fr, lr); test::gamma_p(fr, lr);
test::gamma_q(i, s); test::gamma_q(i, s);
test::lgamma_q(i, s);
test::gamma_q(fr, lr); test::gamma_q(fr, lr);
test::lgamma_q(fr, lr);
test::gamma_p_inv(i, fr); test::gamma_p_inv(i, fr);
test::gamma_q_inv(s, fr); test::gamma_q_inv(s, fr);
test::gamma_p_inva(i, lr); test::gamma_p_inva(i, lr);

View File

@@ -39,6 +39,12 @@ void compile_and_link_test()
check_result<long double>(boost::math::gamma_q<long double>(l, l)); check_result<long double>(boost::math::gamma_q<long double>(l, l));
#endif #endif
check_result<float>(boost::math::lgamma_q<float>(f, f));
check_result<double>(boost::math::lgamma_q<double>(d, d));
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
check_result<long double>(boost::math::lgamma_q<long double>(l, l));
#endif
check_result<float>(boost::math::gamma_p_inv<float>(f, f)); check_result<float>(boost::math::gamma_p_inv<float>(f, f));
check_result<double>(boost::math::gamma_p_inv<double>(d, d)); check_result<double>(boost::math::gamma_p_inv<double>(d, d));
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS #ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS

View File

@@ -369,6 +369,8 @@ run test_gamma_p_derivative_double.cu ;
run test_gamma_p_derivative_float.cu ; run test_gamma_p_derivative_float.cu ;
run test_gamma_p_inv_double.cu ; run test_gamma_p_inv_double.cu ;
run test_gamma_p_inv_float.cu ; run test_gamma_p_inv_float.cu ;
run test_lgamma_q_double.cu ;
run test_lgamma_q_float.cu ;
run test_log1p_double.cu ; run test_log1p_double.cu ;
run test_log1p_float.cu ; run test_log1p_float.cu ;

View File

@@ -394,13 +394,13 @@ BOOST_AUTO_TEST_CASE( test_main )
BOOST_MATH_CONTROL_FP; BOOST_MATH_CONTROL_FP;
#ifndef BOOST_MATH_BUGGY_LARGE_FLOAT_CONSTANTS #ifndef BOOST_MATH_BUGGY_LARGE_FLOAT_CONSTANTS
test_spots(0.0F); test_spots(0.0F, "float");
#endif #endif
test_spots(0.0); test_spots(0.0, "double");
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS #ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
test_spots(0.0L); test_spots(0.0L, "long double");
#ifndef BOOST_MATH_NO_REAL_CONCEPT_TESTS #ifndef BOOST_MATH_NO_REAL_CONCEPT_TESTS
test_spots(boost::math::concepts::real_concept(0.1)); test_spots(boost::math::concepts::real_concept(0.1), "real_concept");
#endif #endif
#endif #endif

View File

@@ -18,7 +18,6 @@
#include <boost/type_traits/is_floating_point.hpp> #include <boost/type_traits/is_floating_point.hpp>
#include <boost/array.hpp> #include <boost/array.hpp>
#include "functor.hpp" #include "functor.hpp"
#include "handle_test_result.hpp" #include "handle_test_result.hpp"
#include "table_type.hpp" #include "table_type.hpp"
@@ -141,8 +140,9 @@ void test_gamma(T, const char* name)
} }
template <class T> template <class T>
void test_spots(T) void test_spots(T, const char* name = nullptr)
{ {
std::cout << "Testing spot values with type " << name << std::endl;
// //
// basic sanity checks, tolerance is 10 epsilon expressed as a percentage: // basic sanity checks, tolerance is 10 epsilon expressed as a percentage:
// //
@@ -256,6 +256,38 @@ void test_spots(T)
BOOST_CHECK_EQUAL(::boost::math::gamma_q(static_cast<T>(1770), static_cast<T>(1e-12)), 1); BOOST_CHECK_EQUAL(::boost::math::gamma_q(static_cast<T>(1770), static_cast<T>(1e-12)), 1);
BOOST_CHECK_EQUAL(::boost::math::gamma_p(static_cast<T>(1770), static_cast<T>(1e-12)), 0); BOOST_CHECK_EQUAL(::boost::math::gamma_p(static_cast<T>(1770), static_cast<T>(1e-12)), 0);
// //
// Check that lgamma_q returns correct values with spot values calculated via wolframalpha log(Q[a, x])
//
BOOST_CHECK_CLOSE(::boost::math::lgamma_q(static_cast<T>(5), static_cast<T>(100)), static_cast<T>(-84.71697591169848944613823640968965801339401810393519310714864307L), tolerance);
BOOST_CHECK_CLOSE(::boost::math::lgamma_q(static_cast<T>(22.5), static_cast<T>(2000)), static_cast<T>(-1883.489773203771543025750308264545743305089849873060383828767138L), tolerance);
BOOST_CHECK_CLOSE(::boost::math::lgamma_q(static_cast<T>(501.25), static_cast<T>(2000)), static_cast<T>(-810.2453406781655559126505101822969531699112391075198076300675402L), tolerance);
BOOST_CHECK_CLOSE(::boost::math::lgamma_q(static_cast<T>(20), static_cast<T>(0.25)), static_cast<T>(-2.946458104491857816330873290969917497748067639461638294404e-31L), tolerance);
BOOST_CHECK_CLOSE(::boost::math::lgamma_q(static_cast<T>(40), static_cast<T>(0.75)), static_cast<T>(-5.930604927955460343652485525435087275997461623988991819824e-54L), tolerance);
#if defined(__CYGWIN__) || defined(__MINGW32__)
T gcc_win_mul = 2;
#else
T gcc_win_mul = 1;
#endif
BOOST_CHECK_CLOSE(::boost::math::lgamma_q(static_cast<T>(50), static_cast<T>(2)), static_cast<T>(-5.214301903317168085381693412994550732094621576607843973832e-51L), tolerance * gcc_win_mul);
BOOST_CHECK_CLOSE(::boost::math::lgamma_q(static_cast<T>(500), static_cast<T>(10)), static_cast<T>(-3.79666711621207197039397438773960431648625558027046365463e-639L), tolerance * 3 * gcc_win_mul);
BOOST_CHECK_CLOSE(::boost::math::lgamma_q(static_cast<T>(5), static_cast<T>(1000)), static_cast<T>(-975.5430287171020511929200293377669175923128826278957569928895945L), tolerance);
// Pairs of tests that bisect the crossover condition in our code at double and then quad precision:
BOOST_CHECK_CLOSE(::boost::math::lgamma_q(static_cast<T>(10), static_cast<T>(698.75)), static_cast<T>(-652.5952453102824132865663191324423994628428404928732148525545721L), tolerance);
BOOST_CHECK_CLOSE(::boost::math::lgamma_q(static_cast<T>(10), static_cast<T>(699.25)), static_cast<T>(-653.0888168445921483147208556398158677077537551419551652934287016L), tolerance);
BOOST_CHECK_CLOSE(::boost::math::lgamma_q(static_cast<T>(10), static_cast<T>(999.75)), static_cast<T>(-950.3752463850600415679327136010171192193400042422096029239012176L), tolerance);
BOOST_CHECK_CLOSE(::boost::math::lgamma_q(static_cast<T>(10), static_cast<T>(1000.25)), static_cast<T>(-950.8707509166152482936275883547176592196662090187561681198668099L), tolerance);
BOOST_CHECK_CLOSE(::boost::math::lgamma_q(static_cast<T>(50), static_cast<T>(698.75)), static_cast<T>(-522.3277960730837166223131189587863209730608668858212533099139269L), tolerance);
BOOST_CHECK_CLOSE(::boost::math::lgamma_q(static_cast<T>(50), static_cast<T>(699.25)), static_cast<T>(-522.7927997457481265511084805522296021540768033975669071565674196L), tolerance);
BOOST_CHECK_CLOSE(::boost::math::lgamma_q(static_cast<T>(50), static_cast<T>(999.75)), static_cast<T>(-805.7977867938474339107474131612354353193501692041340771552419902L), tolerance);
BOOST_CHECK_CLOSE(::boost::math::lgamma_q(static_cast<T>(50), static_cast<T>(1000.25)), static_cast<T>(-806.2733124989172792095030711884568388681331032891850662521501582L), tolerance);
BOOST_CHECK_CLOSE(::boost::math::lgamma_q(static_cast<T>(800), static_cast<T>(999.75)), static_cast<T>(-24.33274293617739453303937714319703386675839030466670622049929011L), tolerance * 2);
BOOST_CHECK_CLOSE(::boost::math::lgamma_q(static_cast<T>(800), static_cast<T>(1000.25)), static_cast<T>(-24.43514173634027477093666725985191846106997808357863808910970142L), tolerance * (boost::math::tools::digits<T>() > 54 ? 20 : 1));
// Once we get large a,x then error start to accumulate no matter what we do:
BOOST_CHECK_CLOSE(::boost::math::lgamma_q(static_cast<T>(1200), static_cast<T>(1249.75)), static_cast<T>(-2.565496161584661216769813239648606145255794643472303927896044375L), tolerance * (std::is_floating_point<T>::value ? 1 : 4));
BOOST_CHECK_CLOSE(::boost::math::lgamma_q(static_cast<T>(1200), static_cast<T>(1250.25)), static_cast<T>(-2.591934862117586205519309712218581885256650074210410262843591453L), tolerance * ((std::numeric_limits<T>::max_digits10 >= 36 || std::is_same<T, boost::math::concepts::real_concept>::value) ? 750 : (std::is_same<T, float>::value ? 1 : 50))); // Test fails on ARM64 and s390x long doubles and real_concept types unless tolerance is adjusted
BOOST_CHECK_CLOSE(::boost::math::lgamma_q(static_cast<T>(2200), static_cast<T>(2249.75)), static_cast<T>(-1.933779894897391651410597618307863427927461116308937004149240320L), tolerance * (std::is_floating_point<T>::value ? 1 : 10));
BOOST_CHECK_CLOSE(::boost::math::lgamma_q(static_cast<T>(2200), static_cast<T>(2250.25)), static_cast<T>(-1.950346484067948344620463026377077515919992808640737320057812268L), tolerance * (std::is_same<T, float>::value ? 1 : (std::is_floating_point<T>::value ? 100 : 200)));
//
// Coverage: // Coverage:
// //
#ifndef BOOST_MATH_NO_EXCEPTIONS #ifndef BOOST_MATH_NO_EXCEPTIONS
@@ -265,6 +297,11 @@ void test_spots(T)
BOOST_CHECK_THROW(boost::math::gamma_q(static_cast<T>(1), static_cast<T>(-2)), std::domain_error); BOOST_CHECK_THROW(boost::math::gamma_q(static_cast<T>(1), static_cast<T>(-2)), std::domain_error);
BOOST_CHECK_THROW(boost::math::gamma_p(static_cast<T>(0), static_cast<T>(2)), std::domain_error); BOOST_CHECK_THROW(boost::math::gamma_p(static_cast<T>(0), static_cast<T>(2)), std::domain_error);
BOOST_CHECK_THROW(boost::math::gamma_q(static_cast<T>(0), static_cast<T>(2)), std::domain_error); BOOST_CHECK_THROW(boost::math::gamma_q(static_cast<T>(0), static_cast<T>(2)), std::domain_error);
BOOST_CHECK_THROW(boost::math::lgamma_q(static_cast<T>(-1), static_cast<T>(2)), std::domain_error);
BOOST_CHECK_THROW(boost::math::lgamma_q(static_cast<T>(1), static_cast<T>(-2)), std::domain_error);
BOOST_CHECK_THROW(boost::math::lgamma_q(static_cast<T>(0), static_cast<T>(2)), std::domain_error);
BOOST_CHECK_THROW(boost::math::gamma_p_derivative(static_cast<T>(-1), static_cast<T>(2)), std::domain_error); BOOST_CHECK_THROW(boost::math::gamma_p_derivative(static_cast<T>(-1), static_cast<T>(2)), std::domain_error);
BOOST_CHECK_THROW(boost::math::gamma_p_derivative(static_cast<T>(1), static_cast<T>(-2)), std::domain_error); BOOST_CHECK_THROW(boost::math::gamma_p_derivative(static_cast<T>(1), static_cast<T>(-2)), std::domain_error);
BOOST_CHECK_THROW(boost::math::gamma_p_derivative(static_cast<T>(0), static_cast<T>(2)), std::domain_error); BOOST_CHECK_THROW(boost::math::gamma_p_derivative(static_cast<T>(0), static_cast<T>(2)), std::domain_error);
@@ -275,6 +312,11 @@ void test_spots(T)
BOOST_CHECK((boost::math::isnan)(boost::math::gamma_q(static_cast<T>(1), static_cast<T>(-2)))); BOOST_CHECK((boost::math::isnan)(boost::math::gamma_q(static_cast<T>(1), static_cast<T>(-2))));
BOOST_CHECK((boost::math::isnan)(boost::math::gamma_p(static_cast<T>(0), static_cast<T>(2)))); BOOST_CHECK((boost::math::isnan)(boost::math::gamma_p(static_cast<T>(0), static_cast<T>(2))));
BOOST_CHECK((boost::math::isnan)(boost::math::gamma_q(static_cast<T>(0), static_cast<T>(2)))); BOOST_CHECK((boost::math::isnan)(boost::math::gamma_q(static_cast<T>(0), static_cast<T>(2))));
BOOST_CHECK((boost::math::isnan)(boost::math::lgamma_q(static_cast<T>(-1), static_cast<T>(2))));
BOOST_CHECK((boost::math::isnan)(boost::math::lgamma_q(static_cast<T>(1), static_cast<T>(-2))));
BOOST_CHECK((boost::math::isnan)(boost::math::lgamma_q(static_cast<T>(0), static_cast<T>(2))));
BOOST_CHECK((boost::math::isnan)(boost::math::gamma_p_derivative(static_cast<T>(-1), static_cast<T>(2)))); BOOST_CHECK((boost::math::isnan)(boost::math::gamma_p_derivative(static_cast<T>(-1), static_cast<T>(2))));
BOOST_CHECK((boost::math::isnan)(boost::math::gamma_p_derivative(static_cast<T>(1), static_cast<T>(-2)))); BOOST_CHECK((boost::math::isnan)(boost::math::gamma_p_derivative(static_cast<T>(1), static_cast<T>(-2))));
BOOST_CHECK((boost::math::isnan)(boost::math::gamma_p_derivative(static_cast<T>(0), static_cast<T>(2)))); BOOST_CHECK((boost::math::isnan)(boost::math::gamma_p_derivative(static_cast<T>(0), static_cast<T>(2))));

View File

@@ -0,0 +1,102 @@
// Copyright John Maddock 2016.
// Copyright Matt Borland 2024.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#define BOOST_MATH_PROMOTE_DOUBLE_POLICY false
#include <iostream>
#include <iomanip>
#include <vector>
#include <boost/math/special_functions.hpp>
#include "cuda_managed_ptr.hpp"
#include "stopwatch.hpp"
// For the CUDA runtime routines (prefixed with "cuda_")
#include <cuda_runtime.h>
typedef double float_type;
/**
* CUDA Kernel Device code
*
*/
__global__ void cuda_test(const float_type *in, float_type *out, int numElements)
{
using std::cos;
int i = blockDim.x * blockIdx.x + threadIdx.x;
if (i < numElements)
{
out[i] = boost::math::lgamma_q(in[i], in[i]);
}
}
/**
* Host main routine
*/
int main(void)
{
// Error code to check return values for CUDA calls
cudaError_t err = cudaSuccess;
// Print the vector length to be used, and compute its size
int numElements = 50000;
std::cout << "[Vector operation on " << numElements << " elements]" << std::endl;
// Allocate the managed input vector A
cuda_managed_ptr<float_type> input_vector(numElements);
// Allocate the managed output vector C
cuda_managed_ptr<float_type> output_vector(numElements);
// Initialize the input vectors
for (int i = 0; i < numElements; ++i)
{
input_vector[i] = rand()/(float_type)RAND_MAX;
}
// Launch the Vector Add CUDA Kernel
int threadsPerBlock = 1024;
int blocksPerGrid =(numElements + threadsPerBlock - 1) / threadsPerBlock;
std::cout << "CUDA kernel launch with " << blocksPerGrid << " blocks of " << threadsPerBlock << " threads" << std::endl;
watch w;
cuda_test<<<blocksPerGrid, threadsPerBlock>>>(input_vector.get(), output_vector.get(), numElements);
cudaDeviceSynchronize();
std::cout << "CUDA kernal done in: " << w.elapsed() << "s" << std::endl;
err = cudaGetLastError();
if (err != cudaSuccess)
{
std::cerr << "Failed to launch vectorAdd kernel (error code " << cudaGetErrorString(err) << ")!" << std::endl;
return EXIT_FAILURE;
}
// Verify that the result vector is correct
std::vector<float_type> results;
results.reserve(numElements);
w.reset();
for(int i = 0; i < numElements; ++i)
results.push_back(boost::math::lgamma_q(input_vector[i], input_vector[i]));
double t = w.elapsed();
// check the results
for(int i = 0; i < numElements; ++i)
{
if (boost::math::epsilon_difference(output_vector[i], results[i]) > 10)
{
std::cerr << "Result verification failed at element " << i << "!" << std::endl;
return EXIT_FAILURE;
}
}
std::cout << "Test PASSED, normal calculation time: " << t << "s" << std::endl;
std::cout << "Done\n";
return 0;
}

102
test/test_lgamma_q_float.cu Normal file
View File

@@ -0,0 +1,102 @@
// Copyright John Maddock 2016.
// Copyright Matt Borland 2024.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#define BOOST_MATH_PROMOTE_DOUBLE_POLICY false
#include <iostream>
#include <iomanip>
#include <vector>
#include <boost/math/special_functions.hpp>
#include "cuda_managed_ptr.hpp"
#include "stopwatch.hpp"
// For the CUDA runtime routines (prefixed with "cuda_")
#include <cuda_runtime.h>
typedef float float_type;
/**
* CUDA Kernel Device code
*
*/
__global__ void cuda_test(const float_type *in, float_type *out, int numElements)
{
using std::cos;
int i = blockDim.x * blockIdx.x + threadIdx.x;
if (i < numElements)
{
out[i] = boost::math::lgamma_q(in[i], in[i]);
}
}
/**
* Host main routine
*/
int main(void)
{
// Error code to check return values for CUDA calls
cudaError_t err = cudaSuccess;
// Print the vector length to be used, and compute its size
int numElements = 50000;
std::cout << "[Vector operation on " << numElements << " elements]" << std::endl;
// Allocate the managed input vector A
cuda_managed_ptr<float_type> input_vector(numElements);
// Allocate the managed output vector C
cuda_managed_ptr<float_type> output_vector(numElements);
// Initialize the input vectors
for (int i = 0; i < numElements; ++i)
{
input_vector[i] = rand()/(float_type)RAND_MAX;
}
// Launch the Vector Add CUDA Kernel
int threadsPerBlock = 1024;
int blocksPerGrid =(numElements + threadsPerBlock - 1) / threadsPerBlock;
std::cout << "CUDA kernel launch with " << blocksPerGrid << " blocks of " << threadsPerBlock << " threads" << std::endl;
watch w;
cuda_test<<<blocksPerGrid, threadsPerBlock>>>(input_vector.get(), output_vector.get(), numElements);
cudaDeviceSynchronize();
std::cout << "CUDA kernal done in: " << w.elapsed() << "s" << std::endl;
err = cudaGetLastError();
if (err != cudaSuccess)
{
std::cerr << "Failed to launch vectorAdd kernel (error code " << cudaGetErrorString(err) << ")!" << std::endl;
return EXIT_FAILURE;
}
// Verify that the result vector is correct
std::vector<float_type> results;
results.reserve(numElements);
w.reset();
for(int i = 0; i < numElements; ++i)
results.push_back(boost::math::lgamma_q(input_vector[i], input_vector[i]));
double t = w.elapsed();
// check the results
for(int i = 0; i < numElements; ++i)
{
if (boost::math::epsilon_difference(output_vector[i], results[i]) > 10)
{
std::cerr << "Result verification failed at element " << i << "!" << std::endl;
return EXIT_FAILURE;
}
}
std::cout << "Test PASSED, normal calculation time: " << t << "s" << std::endl;
std::cout << "Done\n";
return 0;
}