/* * Copyright Andrey Semashev 2007 - 2013. * Distributed under the Boost Software License, Version 1.0. * (See accompanying file LICENSE_1_0.txt or copy at * http://www.boost.org/LICENSE_1_0.txt) */ /*! * \file dump_avx2.cpp * \author Andrey Semashev * \date 05.05.2013 * * \brief This header is the Boost.Log library implementation, see the library documentation * at http://www.boost.org/libs/log/doc/log.html. */ // NOTE: You should generally avoid including headers as much as possible here, because this file // is compiled with special compiler options, and any included header may result in generation of // unintended code with these options and violation of ODR. #include #include #include #include #include #include namespace boost { BOOST_LOG_OPEN_NAMESPACE namespace aux { extern const char g_lowercase_dump_char_table[]; extern const char g_uppercase_dump_char_table[]; template< typename CharT > extern void dump_data_generic(const void* data, std::size_t size, std::basic_ostream< CharT >& strm); BOOST_LOG_ANONYMOUS_NAMESPACE { enum { packs_per_stride = 32, stride = packs_per_stride * 32 }; union ymm_constant { uint8_t as_bytes[32]; __m256i as_mm; }; static const ymm_constant mm_char_space_mask = {{ ' ', 0, 0, ' ', 0, 0, ' ', 0, 0, ' ', 0, 0, ' ', 0, 0, ' ', ' ', 0, 0, ' ', 0, 0, ' ', 0, 0, ' ', 0, 0, ' ', 0, 0, ' ' }}; static const ymm_constant mm_shuffle_pattern1 = {{ 0x80, 0, 1, 0x80, 2, 3, 0x80, 4, 5, 0x80, 6, 7, 0x80, 8, 9, 0x80, 0x80, 0, 1, 0x80, 2, 3, 0x80, 4, 5, 0x80, 6, 7, 0x80, 8, 9, 0x80 }}; static const ymm_constant mm_shuffle_pattern2 = {{ 0, 1, 0x80, 2, 3, 0x80, 4, 5, 0x80, 6, 7, 0x80, 8, 9, 0x80, 10, 0, 1, 0x80, 2, 3, 0x80, 4, 5, 0x80, 6, 7, 0x80, 8, 9, 0x80, 10 }}; static const ymm_constant mm_shuffle_pattern3 = {{ 5, 0x80, 6, 7, 0x80, 8, 9, 0x80, 10, 11, 0x80, 12, 13, 0x80, 14, 15, 5, 0x80, 6, 7, 0x80, 8, 9, 0x80, 10, 11, 0x80, 12, 13, 0x80, 14, 15 }}; static const ymm_constant mm_shuffle_pattern13 = {{ 0x80, 0, 1, 0x80, 2, 3, 0x80, 4, 5, 0x80, 6, 7, 0x80, 8, 9, 0x80, 5, 0x80, 6, 7, 0x80, 8, 9, 0x80, 10, 11, 0x80, 12, 13, 0x80, 14, 15 }}; //! Dumps a pack of input data into a string of 8 bit ASCII characters static BOOST_LOG_FORCEINLINE void dump_pack(__m256i mm_char_a, __m256i mm_input, __m256i& mm_output1, __m256i& mm_output2, __m256i& mm_output3) { // Split half-bytes const __m256i mm_15 = _mm256_set1_epi8(0x0F); __m256i mm_input_hi = _mm256_and_si256(_mm256_srli_epi16(mm_input, 4), mm_15); __m256i mm_input_lo = _mm256_and_si256(mm_input, mm_15); // Stringize each of the halves const __m256i mm_9 = _mm256_set1_epi8(9); __m256i mm_addend_hi = _mm256_cmpgt_epi8(mm_input_hi, mm_9); __m256i mm_addend_lo = _mm256_cmpgt_epi8(mm_input_lo, mm_9); const __m256i mm_char_0 = _mm256_set1_epi8('0'); mm_addend_hi = _mm256_blendv_epi8(mm_char_0, mm_char_a, mm_addend_hi); mm_addend_lo = _mm256_blendv_epi8(mm_char_0, mm_char_a, mm_addend_lo); mm_input_hi = _mm256_add_epi8(mm_input_hi, mm_addend_hi); mm_input_lo = _mm256_add_epi8(mm_input_lo, mm_addend_lo); // Join them back together __m256i mm_1 = _mm256_unpacklo_epi8(mm_input_hi, mm_input_lo); __m256i mm_2 = _mm256_unpackhi_epi8(mm_input_hi, mm_input_lo); // Insert spaces between stringized bytes: // |0123456789abcdef|0123456789abcdef| // | 01 23 45 67 89 |ab cd ef 01 23 4|5 67 89 ab cd ef| __m256i mm_out1 = _mm256_shuffle_epi8(mm_1, mm_shuffle_pattern1.as_mm); __m256i mm_out2 = _mm256_shuffle_epi8(_mm256_alignr_epi8(mm_2, mm_1, 10), mm_shuffle_pattern2.as_mm); __m256i mm_out3 = _mm256_shuffle_epi8(mm_2, mm_shuffle_pattern3.as_mm); __m256i mm_char_space = mm_char_space_mask.as_mm; mm_out1 = _mm256_or_si256(mm_out1, mm_char_space); mm_char_space = _mm256_srli_si256(mm_char_space, 1); mm_out2 = _mm256_or_si256(mm_out2, mm_char_space); mm_char_space = _mm256_srli_si256(mm_char_space, 1); mm_out3 = _mm256_or_si256(mm_out3, mm_char_space); mm_output1 = _mm256_permute2x128_si256(mm_out1, mm_out2, (2u << 4) | 0u); mm_output2 = _mm256_permute2x128_si256(mm_out3, mm_out1, (3u << 4) | 0u); mm_output3 = _mm256_permute2x128_si256(mm_out2, mm_out3, (3u << 4) | 1u); } //! Dumps a pack of input data into a string of 8 bit ASCII characters static BOOST_LOG_FORCEINLINE void dump_pack(__m256i mm_char_a, __m128i mm_input, __m128i& mm_output1, __m128i& mm_output2, __m128i& mm_output3) { // Split half-bytes __m128i mm_input_hi = _mm_srli_epi16(mm_input, 4); __m256i mm = _mm256_insertf128_si256(_mm256_castsi128_si256(_mm_unpacklo_epi8(mm_input_hi, mm_input)), _mm_unpackhi_epi8(mm_input_hi, mm_input), 1); mm = _mm256_and_si256(mm, _mm256_set1_epi8(0x0F)); // Stringize the halves __m256i mm_addend = _mm256_cmpgt_epi8(mm, _mm256_set1_epi8(9)); mm_addend = _mm256_blendv_epi8(_mm256_set1_epi8('0'), mm_char_a, mm_addend); mm = _mm256_add_epi8(mm, mm_addend); // Insert spaces between stringized bytes: __m256i mm_out13 = _mm256_shuffle_epi8(mm, mm_shuffle_pattern13.as_mm); __m128i mm_out2 = _mm_shuffle_epi8(_mm_alignr_epi8(_mm256_extractf128_si256(mm, 1), _mm256_castsi256_si128(mm), 10), _mm256_castsi256_si128(mm_shuffle_pattern2.as_mm)); __m128i mm_char_space = _mm256_castsi256_si128(mm_char_space_mask.as_mm); mm_output1 = _mm_or_si128(_mm256_castsi256_si128(mm_out13), mm_char_space); mm_char_space = _mm_srli_si128(mm_char_space, 1); mm_output2 = _mm_or_si128(mm_out2, mm_char_space); mm_char_space = _mm_srli_si128(mm_char_space, 1); mm_output3 = _mm_or_si128(_mm256_extractf128_si256(mm_out13, 1), mm_char_space); } template< typename CharT > BOOST_LOG_FORCEINLINE void store_characters(__m256i mm_chars, CharT* buf) { switch (sizeof(CharT)) { case 1: _mm256_store_si256(reinterpret_cast< __m256i* >(buf), mm_chars); break; case 2: _mm256_store_si256(reinterpret_cast< __m256i* >(buf), _mm256_cvtepu8_epi16(_mm256_castsi256_si128(mm_chars))); _mm256_store_si256(reinterpret_cast< __m256i* >(buf) + 1, _mm256_cvtepu8_epi16(_mm256_extractf128_si256(mm_chars, 1))); break; case 4: { __m256i mm = _mm256_unpackhi_epi64(mm_chars, mm_chars); _mm256_store_si256(reinterpret_cast< __m256i* >(buf), _mm256_cvtepu8_epi32(_mm256_castsi256_si128(mm_chars))); _mm256_store_si256(reinterpret_cast< __m256i* >(buf) + 1, _mm256_cvtepu8_epi32(_mm256_castsi256_si128(mm))); _mm256_store_si256(reinterpret_cast< __m256i* >(buf) + 2, _mm256_cvtepu8_epi32(_mm256_extractf128_si256(mm_chars, 1))); _mm256_store_si256(reinterpret_cast< __m256i* >(buf) + 3, _mm256_cvtepu8_epi32(_mm256_extractf128_si256(mm, 1))); } break; } } template< typename CharT > BOOST_LOG_FORCEINLINE void store_characters(__m128i mm_chars, CharT* buf) { switch (sizeof(CharT)) { case 1: _mm_store_si128(reinterpret_cast< __m128i* >(buf), mm_chars); break; case 2: _mm256_store_si256(reinterpret_cast< __m256i* >(buf), _mm256_cvtepu8_epi16(mm_chars)); break; case 4: { __m128i mm = _mm_unpackhi_epi64(mm_chars, mm_chars); _mm256_store_si256(reinterpret_cast< __m256i* >(buf), _mm256_cvtepu8_epi32(mm_chars)); _mm256_store_si256(reinterpret_cast< __m256i* >(buf) + 1, _mm256_cvtepu8_epi32(mm)); } break; } } template< typename CharT > BOOST_LOG_FORCEINLINE void dump_data_avx2(const void* data, std::size_t size, std::basic_ostream< CharT >& strm) { typedef CharT char_type; char_type buf_storage[stride * 3u + 32u]; // Align the temporary buffer at 32 bytes char_type* const buf = reinterpret_cast< char_type* >((uint8_t*)buf_storage + (32u - (((uintptr_t)(char_type*)buf_storage) & 31u))); char_type* buf_begin = buf + 1u; // skip the first space of the first chunk char_type* buf_end = buf + stride * 3u; const __m256i mm_char_a = _mm256_set1_epi8(((strm.flags() & std::ios_base::uppercase) ? 'A' : 'a') - 10); // First, check the input alignment const uint8_t* p = static_cast< const uint8_t* >(data); if (const std::size_t prealign_size = ((32u - ((uintptr_t)p & 31u)) & 31u)) { __m256i mm_input = _mm256_lddqu_si256(reinterpret_cast< const __m256i* >(p)); __m256i mm_output1, mm_output2, mm_output3; dump_pack(mm_char_a, mm_input, mm_output1, mm_output2, mm_output3); store_characters(mm_output1, buf); store_characters(mm_output2, buf + 32u); store_characters(mm_output3, buf + 64u); _mm256_zeroupper(); strm.write(buf_begin, prealign_size * 3u - 1u); buf_begin = buf; size -= prealign_size; p += prealign_size; } const std::size_t stride_count = size / stride; std::size_t tail_size = size % stride; for (std::size_t i = 0; i < stride_count; ++i) { char_type* b = buf; for (unsigned int j = 0; j < packs_per_stride; ++j, b += 3u * 32u, p += 32u) { __m256i mm_input = _mm256_load_si256(reinterpret_cast< const __m256i* >(p)); __m256i mm_output1, mm_output2, mm_output3; dump_pack(mm_char_a, mm_input, mm_output1, mm_output2, mm_output3); store_characters(mm_output1, b); store_characters(mm_output2, b + 32u); store_characters(mm_output3, b + 64u); } _mm256_zeroupper(); strm.write(buf_begin, buf_end - buf_begin); buf_begin = buf; } if (tail_size > 0) { char_type* b = buf; while (tail_size >= 16u) { __m128i mm_input = _mm_load_si128(reinterpret_cast< const __m128i* >(p)); __m128i mm_output1, mm_output2, mm_output3; dump_pack(mm_char_a, mm_input, mm_output1, mm_output2, mm_output3); store_characters(mm_output1, b); store_characters(mm_output2, b + 16u); store_characters(mm_output3, b + 32u); b += 3u * 16u; p += 16u; tail_size -= 16u; } const char* const char_table = (strm.flags() & std::ios_base::uppercase) ? g_uppercase_dump_char_table : g_lowercase_dump_char_table; for (unsigned int i = 0; i < tail_size; ++i, ++p, b += 3u) { uint32_t n = *p; b[0] = static_cast< char_type >(' '); b[1] = static_cast< char_type >(char_table[n >> 4]); b[2] = static_cast< char_type >(char_table[n & 0x0F]); } _mm256_zeroupper(); strm.write(buf_begin, b - buf_begin); } } } // namespace void dump_data_char_avx2(const void* data, std::size_t size, std::basic_ostream< char >& strm) { if (size >= 32) { dump_data_avx2(data, size, strm); } else { dump_data_generic(data, size, strm); } } void dump_data_wchar_avx2(const void* data, std::size_t size, std::basic_ostream< wchar_t >& strm) { if (size >= 32) { dump_data_avx2(data, size, strm); } else { dump_data_generic(data, size, strm); } } #if !defined(BOOST_NO_CXX11_CHAR16_T) void dump_data_char16_avx2(const void* data, std::size_t size, std::basic_ostream< char16_t >& strm) { if (size >= 32) { dump_data_avx2(data, size, strm); } else { dump_data_generic(data, size, strm); } } #endif #if !defined(BOOST_NO_CXX11_CHAR32_T) void dump_data_char32_avx2(const void* data, std::size_t size, std::basic_ostream< char32_t >& strm) { if (size >= 32) { dump_data_avx2(data, size, strm); } else { dump_data_generic(data, size, strm); } } #endif } // namespace aux BOOST_LOG_CLOSE_NAMESPACE // namespace log } // namespace boost #include