2
0
mirror of https://github.com/boostorg/leaf.git synced 2026-01-24 05:52:17 +00:00
Files
leaf/examples/error_trace.cpp
2019-04-26 12:12:53 -07:00

128 lines
3.3 KiB
C++

// Copyright (c) 2018-2019 Emil Dotchevski and Reverge Studios, Inc.
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
// This program demonstrates the use of leaf::accumulate to capture the path an error takes
// as is bubbles up the call stack. The error path-capturing code only runs if:
// - An error occurs, and
// - A handler that takes e_error_trace argument is present.
// Otherwise none of the error trace machinery will be invoked by LEAF.
// This example is similar to error_log, except the path the error takes is captured and
// recorded in a std::deque, rather than just printed in-place.
#include <boost/leaf/preload.hpp>
#include <boost/leaf/handle_error.hpp>
#include <boost/leaf/result.hpp>
#include <iostream>
#include <deque>
#include <cstdlib>
#define ENABLE_ERROR_TRACE 1
namespace leaf = boost::leaf;
// The error trace is activated only if an error-handling scope provides a handler for e_error_trace.
// This activation logic applies to any type passed to leaf::accumulate.
struct e_error_trace
{
struct rec
{
char const * file;
int line;
friend std::ostream & operator<<( std::ostream & os, rec const & x )
{
return os << x.file << '(' << x.line << ')' << std::endl;
}
};
std::deque<rec> value;
friend std::ostream & operator<<( std::ostream & os, e_error_trace const & tr )
{
for( auto & i : tr.value )
os << i;
return os;
}
};
// The ERROR_TRACE macro is designed for use in functions that detect or forward errors
// up the call stack. If an error occurs, and if an error-handling scope provides a handler
// for e_error_trace, the supplied lambda is executed as the error bubbles up.
#define ERROR_TRACE auto _trace = leaf::accumulate( []( e_error_trace & tr ) { tr.value.emplace_front(e_error_trace::rec{__FILE__, __LINE__}); } )
// Each function in the sequence below calls the previous function, and each function has
// failure_percent chance of failing. If a failure occurs, the ERROR_TRACE macro will cause
// the path the error takes to be captured in an e_error_trace.
int const failure_percent = 25;
leaf::result<void> f1()
{
ERROR_TRACE;
if( (std::rand()%100) > failure_percent )
return { };
else
return leaf::new_error();
}
leaf::result<void> f2()
{
ERROR_TRACE;
if( (std::rand()%100) > failure_percent )
return f1();
else
return leaf::new_error();
}
leaf::result<void> f3()
{
ERROR_TRACE;
if( (std::rand()%100) > failure_percent )
return f2();
else
return leaf::new_error();
}
leaf::result<void> f4()
{
ERROR_TRACE;
if( (std::rand()%100) > failure_percent )
return f3();
else
return leaf::new_error();
}
leaf::result<void> f5()
{
ERROR_TRACE;
if( (std::rand()%100) > failure_percent )
return f4();
else
return leaf::new_error();
}
int main()
{
for( int i=0; i!=10; ++i )
leaf::try_handle_all(
[&]() -> leaf::result<void>
{
std::cout << "Run # " << i << ": ";
LEAF_CHECK(f5());
std::cout << "Success!" << std::endl;
return { };
},
#if ENABLE_ERROR_TRACE // This single #if enables or disables the capturing of the error trace.
[]( e_error_trace const & tr )
{
std::cerr << "Error! Trace:" << std::endl << tr;
},
#endif
[]
{
std::cerr << "Error!" << std::endl;
} );
return 0;
}