
LEAF
Lightweight Error Augmentation Framework written in C++11 | Emil Dotchevski

Abstract
Boost LEAF is a lightweight error handling library for C++11. Features:

• Small single-header format, no dependencies.

• Designed for maximum efficiency ("happy" path and "sad" path).

• No dynamic memory allocations, even with heavy payloads.

• O(1) transport of arbitrary error types (independent of call stack depth).

• Can be used with or without exception handling.

• Support for multi-thread programming.

LEAF is designed with a strong bias towards the common use case where callers of functions which
may fail check for success and forward errors up the call stack but do not handle them. In this case,
only a trivial success-or-failure discriminant is transported. Actual error objects are communicated
directly to the error handling scope, skipping the intermediate check-only frames altogether.

1

Support
• cpplang on Slack (use the #boost channel)

• Boost Users Mailing List

• Boost Developers Mailing List

• Report an issue on GitHub

2

https://Cpplang.slack.com
https://lists.boost.org/mailman/listinfo.cgi/boost-users
https://lists.boost.org/mailman/listinfo.cgi/boost
https://github.com/boostorg/leaf/issues

Portability
LEAF requires only C++11, but is tested on many compiler versions and C++ standards.

The library uses thread-local storage for pointers only. By default, this is implemented via the C++11
thread_local storage class specifier, however it is easy to use a platform-specific TLS API instead;
for example LEAF ships with built-in support for FreeRTOS. See Configuration.

3

Distribution
Copyright © 2018-2021 Emil Dotchevski. Distributed under the Boost Software License, Version 1.0.

There are three distribution channels:

• LEAF is included in official Boost releases, starting with Boost 1.75.

• The source code is hosted on GitHub.

• For maximum portability, the latest LEAF release is also available in single-header format:
simply download leaf.hpp (direct download link).

 LEAF does not depend on Boost or other libraries.

4

http://www.boost.org/LICENSE_1_0.txt
https://www.boost.org/
https://github.com/boostorg/leaf
https://raw.githubusercontent.com/boostorg/leaf/gh-pages/leaf.hpp

Tutorial
What is a failure? It is simply the inability of a function to return a valid result, instead producing
an error object describing the reason for the failure.

A typical design is to return a variant type, e.g. result<T, E>. Internally, such variant types must
store a discriminant (in this case a boolean) to indicate whether the object holds a T or an E.

The design of LEAF is informed by the observation that the immediate caller must have access to
the discriminant in order to determine the availability of a valid T, but otherwise it rarely needs to
access the E. The error object is only needed once an error handling scope is reached.

Therefore what would have been a result<T, E> becomes result<T>, which stores the
discriminant and (optionally) a T, while the E is communicated directly to the error handling scope
where it is needed.

The benefit of this decomposition is that result<T> becomes extremely lightweight, as it is not
coupled with error types; further, error objects are communicated in O(1) time (independent of the
call stack depth). Even very large objects are handled efficiently without dynamic memory
allocation.

Reporting Errors
A function that reports an error is pretty straight-forward:

enum class err1 { e1, e2, e3 };

leaf::result<T> f()
{

 if(error_detected)
 return leaf::new_error(err1::e1); // Pass an error object of any type

 // Produce and return a T.
}

result | new_error

Checking for Errors
Checking for errors communicated by a leaf::result<T> works as expected:

5

leaf::result<U> g()
{
 leaf::result<T> r = f();
 if(!r)
 return r.error();

 T const & v = r.value();
 // Use v to produce a valid U
}

result

The boilerplate if statement can be avoided using BOOST_LEAF_AUTO:

leaf::result<U> g()
{
 BOOST_LEAF_AUTO(v, f()); // Bail out on error

 // Use v to produce a valid U
}

BOOST_LEAF_AUTO | BOOST_LEAF_CHECK

Error Handling
Error handling scopes must use a special syntax to indicate that they need to access error objects.
The following excerpt attempts several operations and handles errors of type err1:

leaf::result<U> r = leaf::try_handle_some(

 []() -> leaf::result<U>
 {
 BOOST_LEAF_AUTO(v1, f1());
 BOOST_LEAF_AUTO(v2, f2());

 return g(v1, v2);
 },

 [](err1 e) -> leaf::result<U>
 {
 if(e == err1::e1)
 // Handle err1::e1
 else
 // Handle any other err1 value
 });

6

try_handle_some | result | BOOST_LEAF_AUTO

The first lambda passed to try_handle_some is executed first; it attempts to produce a result<U>,
but it may fail (we presume that f1 and f2 return leaf::result<T>, and g takes two arguments of
type T and returns a leaf::result<U>).

The second lambda is an error handler: it will be called iff the first lambda fails and an error object
of type err1 was communicated to LEAF. That object is stored on the stack, local to the
try_handle_some function (LEAF knows to allocate this storage because we gave it an error
handler that takes an err1). Error handlers passed to leaf::try_handle_some can return a valid
leaf::result<U> but are allowed to fail.

It is possible for an error handler to specify that it can only deal with a particular value of a given
error type:

leaf::result<U> r = leaf::try_handle_some(

 []() -> leaf::result<U>
 {
 BOOST_LEAF_AUTO(v1, f1());
 BOOST_LEAF_AUTO(v2, f2());

 return g(v1. v2);
 },

 [](leaf::match<err1, err1::e1>) -> leaf::result<U>
 {
 // Handle err::e1
 },

 [](err1 e) -> leaf::result<U>
 {
 // Handle any other err1 value
 });

LEAF considers the provided error handlers in order, and calls the first one for which it can supply
arguments, based on the error objects currently being communicated. Above:

• The first error handler uses the predicate leaf::match to specify that it should only be
considered if an error object of type err1 is available, and its value is err1::e1.

• Otherwise the second error handler will be called if an error object of type err1 is available,
regardless of its value.

• Otherwise leaf::try_handle_some fails.

If we want to ensure that all possible failures are handled, we use leaf::try_handle_all instead
of leaf::try_handle_some:

7

U r = leaf::try_handle_all(

 []() -> leaf::result<U>
 {
 BOOST_LEAF_AUTO(v1, f1());
 BOOST_LEAF_AUTO(v2, f2());

 return g(v1. v2);
 },

 [](leaf::match<err1, err1::e1>) -> U
 {
 // Handle err::e1
 },

 [](err1 e) -> U
 {
 // Handle any other err1 value
 },

 []() -> U
 {
 // Handle any other failure
 });

try_handle_all

The leaf::try_handle_all function enforces at compile time that at least one of the supplied
error handlers takes no arguments (and therefore is able to handle any failure). In addition, all
error handlers are forced to return a valid U, rather than a leaf::result<U>, so that
leaf::try_handle_all is guaranteed to succeed, always.

Working with Different Error Types
It is of course possible to provide different handlers for different error types:

8

enum class err1 { e1, e2, e3 };
enum class err2 { e1, e2 };

....

leaf::result<U> r = leaf::try_handle_some(

 []() -> leaf::result<U>
 {
 BOOST_LEAF_AUTO(v1, f1());
 BOOST_LEAF_AUTO(v2, f2());

 return g(v1, v2);
 },

 [](err1 e) -> leaf::result<U>
 {
 // Handle errors of type `err1`.
 },

 [](err2 e) -> leaf::result<U>
 {
 // Handle errors of type `err2`.
 });

try_handle_some | result | BOOST_LEAF_AUTO

In this case, because we have supplied handlers for err1 and for err2, try_handle_some knows
to allocate storage on the stack for error objects of both types.

Working with Multiple Error Objects
It is possible for an error handler to require more than one error object:

9

enum class err1 { e1, e2, e3 };
enum class err2 { e1, e2 };

....

leaf::result<U> r = leaf::try_handle_some(

 []() -> leaf::result<U>
 {
 BOOST_LEAF_AUTO(v1, f1());
 BOOST_LEAF_AUTO(v2, f2());

 return g(v1, v2);
 },

 [](err1 e1, err2 e2) -> leaf::result<U>
 {
 // Handle failures which communicate both an err1 and an err2 object.
 });

try_handle_some | result | BOOST_LEAF_AUTO

Naturally, leaf::new_error can be invoked with multiple error objects:

leaf::result<T> f()
{

 if(error_detected)
 return leaf::new_error(err1::e1, err2::e2);

 // Produce and return a T.
}

result | new_error

As well, leaf::on_error can be used to automatically associate additional error objects with any
failure that is "in flight":

10

enum class io_error { open_error, read_error, write_error };
enum class parse_error { bad_syntax, bad_range };

leaf::result<int> parse_line(FILE * f);

struct e_line { int value; };

leaf::result<void> process_file(FILE * f)
{
 for(int current_line = 1; current_line != 10; ++current_line)
 {
 auto load = leaf::on_error(e_line{ current_line });

 BOOST_LEAF_AUTO(v, parse_line(f));

 // use v
 }
}

on_error | BOOST_LEAF_AUTO

Presumably, parse_line could fail with an io_error or with a parse_error, but process_file
does not handle errors, so it remains neutral to failures, except to attach the current_line if
something goes wrong. The object returned by on_error holds a copy of the current_line
wrapped in struct e_line. If parse_line succeeds, the e_line object is simply discarded; but if
it fails, the e_line object will be automatically attached to the failure.

Such failures can then be handled like so:

11

leaf::result<void> r = leaf::try_handle_some(

 []() -> leaf::result<void>
 {
 BOOST_LEAF_CHECK(process_file(f));
 },

 [](parse_error e, e_line current_line)
 {
 std::cerr << "Parse error at line " << current_line.value << std::endl;
 },

 [](io_error e, e_line current_line)
 {
 std::cerr << "I/O error at line " << current_line.value << std::endl;
 },

 [](io_error e)
 {
 std::cerr << "I/O error" << std::endl;
 });

try_handle_some | BOOST_LEAF_CHECK

Remember, error handlers are considered in order, so the last one will be called if we get an
io_error but no e_line was communicated to LEAF. Alternatively, we can provide a single
io_error handler that takes current_line as a pointer-to-const:

leaf::result<void> r = leaf::try_handle_some(

 []() -> leaf::result<void>
 {
 BOOST_LEAF_CHECK(process_file(f));
 },

 [](parse_error e, e_line current_line)
 {
 std::cerr << "Parse error at line " << current_line.value << std::endl;
 },

 [](io_error e, e_line const * current_line)
 {
 std::cerr << "Parse error";
 if(current_line)
 std::cerr << " at line " << current_line->value;
 std::cerr << std::endl;
 });

12

In essence, now the e_line argument is optional, LEAF will provide it if it is available, otherwise
pass a null pointer.

Exception Handling
What happens if an operation throws an exception? Not to worry, both leaf::try_handle_some
and leaf::try_handle_all catch exceptions and are able to pass them to any compatible error
handler:

leaf::result<void> r = leaf::try_handle_some(

 []() -> leaf::result<void>
 {
 BOOST_LEAF_CHECK(process_file(f));
 },

 [](std::bad_alloc const &)
 {
 std::cerr << "Out of memory!" << std::endl;
 },

 [](parse_error e, e_line l)
 {
 std::cerr << "Parse error at line " << l.value << std::endl;
 },

 [](io_error e, e_line const * l)
 {
 std::cerr << "Parse error";
 if(l)
 std::cerr << " at line " << l.value;
 std::cerr << std::endl;
 });

try_handle_some | result | BOOST_LEAF_CHECK

Above, we have simply added an error handler that takes a std::bad_alloc, and everything "just
works" as expected: LEAF will dispatch error handlers correctly no matter if failures are
communicated via leaf::result or by an exception.

Of course, if we use exception handling exclusively, we do not need leaf::result at all. In this
case we use leaf::try_catch:

13

leaf::try_catch(

 []
 {
 process_file(f);
 },

 [](std::bad_alloc const &)
 {
 std::cerr << "Out of memory!" << std::endl;
 },

 [](parse_error e, e_line l)
 {
 std::cerr << "Parse error at line " << l.value << std::endl;
 },

 [](io_error e, e_line const * l)
 {
 std::cerr << "Parse error";
 if(l)
 std::cerr << " at line " << l.value;
 std::cerr << std::endl;
 });

try_catch

Remarkably, we did not have to change the error handlers! But how does this work? What kind of
exceptions does process_file throw?

LEAF enables a novel technique of exception handling, which does not use exception type
hierarchies to classify failures and does not carry data in exception objects. Recall that when
failures are communicated via leaf::result, we call leaf::new_error in a return statement,
passing any number of error objects which are sent directly to the correct error handling scope:

enum class err1 { e1, e2, e3 };
enum class err2 { e1, e2 };

....

leaf::result<T> f()
{

 if(error_detected)
 return leaf::new_error(err1::e1, err2::e2);

 // Produce and return a T.
}

14

result | new_error

When using exception handling this becomes:

enum class err1 { e1, e2, e3 };
enum class err2 { e1, e2 };

T f()
{
 if(error_detected)
 throw leaf::exception(err1::e1, err2::e2);

 // Produce and return a T.
}

exception

The leaf::exception function handles the passed error objects just like leaf::new_error does,
and then returns an object of a type that derives from std::exception (which the caller throws).
Using this technique, the exception type is not important: leaf::try_catch catches all exceptions,
then goes through the usual LEAF error handler selection machinery.

If instead we want to use the legacy convention of throwing different types to indicate different
failures, we simply pass an exception object (that is, an object of a type that derives from
std::exception) as the first argument to leaf::exception:

throw leaf::exception(std::runtime_error("Error!"), err1::e1, err2::e2);

In this case the returned object will be of type that derives from std::runtime_error, rather than
from std::exception.

Finally, leaf::on_error "just works" as well. Here is our process_file function rewritten to
throw on error, rather than return a leaf::result:

15

enum class io_error { open_error, read_error, write_error };
enum class parse_error { bad_syntax, bad_range };

int parse_line(FILE * f); // Throws

struct e_line { int value; };

void process_file(FILE * f)
{
 for(int current_line = 1; current_line != 10; ++current_line)
 {
 auto load = leaf::on_error(e_line{ current_line });
 int v = parse_line(f);

 // use v
 }
}

on_error

Using External result Types
Static type checking creates difficulties in error handling interoperability in any non-trivial project.
Using exception handling alleviates this problem somewhat because in that case error types are not
burned into function signatures, so errors easily punch through multiple layers of APIs; but this
doesn’t help C++ in general because the community is fractured on the issue of exception handling.
Regardless of any arguments, the reality is that C++ programs need to be able to handle errors
communicated through multiple layers of APIs via a plethora of error codes, result types and
exceptions.

LEAF enables application developers to shake error objects out of each individual library’s result
type and send them to error handling scopes verbatim. Here is an example:

16

lib1::result<int, lib1::error_code> foo();
lib2::result<int, lib2::error_code> bar();

int g(int a, int b);

leaf::result<int> f()
{
 auto a = foo();
 if(!a)
 return leaf::new_error(a.error());

 auto b = bar();
 if(!b)
 return leaf::new_error(b.error());

 return g(a.value(), b.value());
}

result | new_error

Later we simply call leaf::try_handle_some passing an error handler for each type:

leaf::result<int> r = leaf::try_handle_some(

 []() -> leaf::result<int>
 {
 return f();
 },

 [](lib1::error_code ec) -> leaf::result<int>
 {
 // Handle lib1::error_code
 },

 [](lib2::error_code ec) -> leaf::result<int>
 {
 // Handle lib2::error_code
 });
}

try_handle_some | result

A possible complication is that we might not have the option to return leaf::result<int> from f:
a third party API may impose a specific signature on it, forcing it to return a library-specific result
type. This would be the case when f is intended to be used as a callback:

void register_callback(std::function<lib3::result<int>()> const & callback);

17

Can we use LEAF in this case? Actually we can, as long as lib3::result is able to communicate a
std::error_code. We just have to let LEAF know, by specializing the is_result_type template:

namespace boost { namespace leaf {

template <class T>
struct is_result_type<lib3::result<T>>: std::true_type;

} }

is_result_type

With this in place, f works as before, even though lib3::result isn’t capable of transporting
lib1 errors or lib2 errors:

lib1::result<int, lib1::error_type> foo();
lib2::result<int, lib2::error_type> bar();

int g(int a, int b);

lib3::result<int> f()
{
 auto a = foo();
 if(!a)
 return leaf::new_error(a.error());

 auto b = bar();
 if(!b)
 return leaf::new_error(b.error());

 return g(a.value(), b.value());
}

new_error

The object returned by leaf::new_error converts implicitly to std::error_code, using a LEAF-
specific error_category, which makes lib3::result compatible with leaf::try_handle_some
(and with leaf::try_handle_all):

18

lib3::result<int> r = leaf::try_handle_some(

 []() -> lib3::result<int>
 {
 return f();
 },

 [](lib1::error_code ec) -> lib3::result<int>
 {
 // Handle lib1::error_code
 },

 [](lib2::error_code ec) -> lib3::result<int>
 {
 // Handle lib2::error_code
 });
}

try_handle_some

Error Communication Model

noexcept API

The following figure illustrates how error objects are transported when using LEAF without
exception handling:

19

Figure 1. LEAF noexcept Error Communication Model

The arrows pointing down indicate the call stack order for the functions f1 through f5: higher
level functions calling lower level functions.

Note the call to on_error in f3: it caches the passed error objects of types E1 and E3 in the
returned object load, where they stay ready to be communicated in case any function downstream
from f3 reports an error. Presumably these objects are relevant to any such failure, but are
conveniently accessible only in this scope.

Figure 1 depicts the condition where f5 has detected an error. It calls leaf::new_error to create a
new, unique error_id. The passed error object of type E2 is immediately loaded in the first active
context object that provides static storage for it, found in any calling scope (in this case f1), and is
associated with the newly-generated error_id (solid arrow);

The error_id itself is returned to the immediate caller f4, usually stored in a result<T> object r.
That object takes the path shown by dashed arrows, as each error neutral function, unable to
handle the failure, forwards it to its immediate caller in the returned value — until an error
handling scope is reached.

When the destructor of the load object in f3 executes, it detects that new_error was invoked after
its initialization, loads the cached objects of types E1 and E3 in the first active context object that
provides static storage for them, found in any calling scope (in this case f1), and associates them
with the last generated error_id (solid arrow).

When the error handling scope f1 is reached, it probes ctx for any error objects associated with

20

the error_id it received from f2, and processes a list of user-provided error handlers, in order,
until it finds a handler with arguments that can be supplied using the available (in ctx) error
objects. That handler is called to deal with the failure.

Exception Handling API

The following figure illustrates the slightly different error communication model used when errors
are reported by throwing exceptions:

Figure 2. LEAF Error Communication Model Using Exception Handling

The main difference is that the call to new_error is implicit in the call to the function template
leaf::exception, which in this case takes an exception object of type Ex, and returns an
exception object of unspecified type that derives publicly from Ex.

Interoperability

Ideally, when an error is detected, a program using LEAF would always call new_error, ensuring
that each encountered failure is definitely assigned a unique error_id, which then is reliably
delivered, by an exception or by a result<T> object, to the appropriate error handling scope.

Alas, this is not always possible.

For example, the error may need to be communicated through uncooperative 3rd-party interfaces.
To facilitate this transmission, a error ID may be encoded in a std::error_code. As long as a 3rd-
party interface is able to transport a std::error_code, it should be compatible with LEAF.

21

Further, it is sometimes necessary to communicate errors through an interface that does not even
use std::error_code. An example of this is when an external lower-level library throws an
exception, which is unlikely to be able to carry an error_id.

To support this tricky use case, LEAF provides the function current_error, which returns the
error ID returned by the most recent call (from this thread) to new_error. One possible approach
to solving the problem is to use the following logic (implemented by the error_monitor type):

1. Before calling the uncooperative API, call current_error and cache the returned value.

2. Call the API, then call current_error again:

a. If this returns the same value as before, pass the error objects to new_error to associate
them with a new error_id;

b. else, associate the error objects with the error_id value returned by the second call to
current_error.

Note that if the above logic is nested (e.g. one function calling another), new_error will be called
only by the inner-most function, because that call guarantees that all calling functions will hit the
else branch.

For a detailed tutorial see Using error_monitor to Report Arbitrary Errors from C-callbacks.



To avoid ambiguities, whenever possible, use the exception function template
when throwing exceptions to ensure that the exception object transports a unique
error_id; better yet, use the BOOST_LEAF_THROW_EXCEPTION macro, which in
addition will capture __FILE__ and __LINE__.

Loading of Error Objects
To load an error object is to move it into an active context, usually local to a try_handle_some, a
try_handle_all or a try_catch scope in the calling thread, where it becomes uniquely
associated with a specific error_id — or discarded if storage is not available.

Various LEAF functions take a list of error objects to load. As an example, if a function copy_file
that takes the name of the input file and the name of the output file as its arguments detects a
failure, it could communicate an error code ec, plus the two relevant file names using new_error:

return leaf::new_error(ec, e_input_name{n1}, e_output_name{n2});

Alternatively, error objects may be loaded using a result<T> that is already communicating an
error. This way they become associated with that error, rather than with a new error:

22

leaf::result<int> f() noexcept;

leaf::result<void> g(char const * fn) noexcept
{
 if(leaf::result<int> r = f())
 { ①
 ;
 return { };
 }
 else
 {
 return r.load(e_file_name{fn}); ②
 }
}

result | load

① Success! Use r.value().

② f() has failed; here we associate an additional e_file_name with the error. However, this
association occurs iff in the call stack leading to g there are error handlers that take an
e_file_name argument. Otherwise, the object passed to load is discarded. In other words, the
passed objects are loaded iff the program actually uses them to handle errors.

Besides error objects, load can take function arguments:

• If we pass a function that takes no arguments, it is invoked, and the returned error object is
loaded.

Consider that if we pass to load an error object that is not needed by any error handler, it will
be discarded. If the object is expensive to compute, it would be better if the computation can be
skipped as well. Passing a function with no arguments to load is an excellent way to achieve
this behavior:

23

struct info { };

info compute_info() noexcept;

leaf::result<void> operation(char const * file_name) noexcept
{
 if(leaf::result<int> r = try_something())
 { ①

 return { };
 }
 else
 {
 return r.load(②
 [&]
 {
 return compute_info();
 });
 }
}

result | load

① Success! Use r.value().

② try_something has failed; compute_info will only be called if an error handler exists
which takes a info argument.

• If we pass a function that takes a single argument of type E &, LEAF calls the function with the
object of type E currently loaded in an active context, associated with the error. If no such
object is available, a new one is default-initialized and then passed to the function.

For example, if an operation that involves many different files fails, a program may provide for
collecting all relevant file names in a e_relevant_file_names object:

24

struct e_relevant_file_names
{
 std::vector<std::string> value;
};

leaf::result<void> operation(char const * file_name) noexcept
{
 if(leaf::result<int> r = try_something())
 { ①

 return { };
 }
 else
 {
 return r.load(②
 [&](e_relevant_file_names & e)
 {
 e.value.push_back(file_name);
 });
 }
}

result | load

① Success! Use r.value().

② try_something has failed — add file_name to the e_relevant_file_names object,
associated with the error_id communicated in r. Note, however, that the passed function
will only be called iff in the call stack there are error handlers that take an
e_relevant_file_names object.

Using on_error
It is not typical for an error reporting function to be able to supply all of the data needed by a
suitable error handling function in order to recover from the failure. For example, a function that
reports FILE failures may not have access to the file name, yet an error handling function needs it
in order to print a useful error message.

Of course the file name is typically readily available in the call stack leading to the failed FILE
operation. Below, while parse_info can’t report the file name, parse_file can and does:

25

leaf::result<info> parse_info(FILE * f) noexcept; ①

leaf::result<info> parse_file(char const * file_name) noexcept
{
 auto load = leaf::on_error(leaf::e_file_name{file_name}); ②

 if(FILE * f = fopen(file_name,"r"))
 {
 auto r = parse_info(f);
 fclose(f);
 return r;
 }
 else
 return leaf::new_error(error_enum::file_open_error);
}

result | on_error | new_error

① parse_info parses f, communicating errors using result<info>.

② Using on_error ensures that the file name is included with any error reported out of
parse_file. All we need to do is hold on to the returned object load; when it expires, if an
error is being reported, the passed e_file_name value will be automatically associated with it.

 on_error —  like load — can be passed any number of arguments.

When we invoke on_error, we can pass three kinds of arguments:

1. Actual error objects (like in the example above);

2. Functions that take no arguments and return an error object;

3. Functions that take an error object by mutable reference.

If we want to use on_error to capture errno, we can’t just pass e_errno to it, because at that time
it hasn’t been set (yet). Instead, we’d pass a function that returns it:

26

void read_file(FILE * f) {

 auto load = leaf::on_error([]{ return e_errno{errno}; });

 size_t nr1=fread(buf1,1,count1,f);
 if(ferror(f))
 throw leaf::exception();

 size_t nr2=fread(buf2,1,count2,f);
 if(ferror(f))
 throw leaf::exception();

 size_t nr3=fread(buf3,1,count3,f);
 if(ferror(f))
 throw leaf::exception();

}

Above, if a throw statement is reached, LEAF will invoke the function passed to on_error and
associate the returned e_errno object with the exception.

The final argument type that can be passed to on_error is a function that takes a single mutable
error object reference. In this case, on_error uses it similarly to how such functions are used by
load; see Loading of Error Objects.

Using Predicates to Handle Errors
Usually, LEAF error handlers are selected based on the type of the arguments they take and the type
of the available error objects. When an error handler takes a predicate type as an argument, the
handler selection procedure is able to also take into account the value of the available error objects.

Consider this error code enum:

enum class my_error
{
 e1=1,
 e2,
 e3
};

We could handle my_error errors like so:

27

return leaf::try_handle_some(

 []
 {
 return f(); // returns leaf::result<T>
 },

 [](my_error e)
 { ①
 switch(e)
 {
 case my_error::e1:
 ; ②
 break;
 case my_error::e2:
 case my_error::e3:
 ; ③
 break;
 default:
 ; ④
 break;
 });

① This handler will be selected if we’ve got a my_error object.

② Handle e1 errors.

③ Handle e2 and e3 errors.

④ Handle bad my_error values.

If my_error object is available, LEAF will call our error handler. If not, the failure will be
forwarded to our caller.

This can be rewritten using the match predicate to organize the different cases in different error
handlers. The following is equivalent:

28

return leaf::try_handle_some(

 []
 {
 return f(); // returns leaf::result<T>
 },

 [](leaf::match<my_error, my_error::e1> m)
 { ①
 assert(m.matched == my_error::e1);
 ;
 },

 [](leaf::match<my_error, my_error::e2, my_error::e3> m)
 { ②
 assert(m.matched == my_error::e2 || m.matched == my_error::e3);
 ;
 },

 [](my_error e)
 { ③
 ;
 });

① We’ve got a my_error object that compares equal to e1.

② We`ve got a my_error object that compares equal to either e2 or e3.

③ Handle bad my_error values.

The first argument to the match template generally specifies the type E of the error object e that
must be available for the error handler to be considered at all. Typically, the rest of the arguments
are values. The error handler is dropped if e does not compare equal to any of them.

In particular, match works great with std::error_code. The following handler is designed to
handle ENOENT errors:

[](leaf::match<std::error_code, std::errc::no_such_file_or_directory>)
{
}

This, however, requires C++17 or newer, because it is impossible to infer the type of the error enum
(in this case, std::errc) from the specified type std::error_code, and C++11 does not allow
auto template arguments. LEAF provides the following workaround, compatible with C++11:

[](leaf::match<leaf::condition<std::errc>, std::errc::no_such_file_or_directory>)
{
}

29

In addition, it is possible to select a handler based on std::error_category. The following
handler will match any std::error_code of the std::generic_category (requires C++17 or
newer):

[](std::error_code, leaf::category<std::errc>>)
{
}

 See match for more examples.

The following predicates are available:

• match: as described above.

• match_value: where match<E, V…> compares the object e of type E with the values V…,
match_value<E, V…> compare e.value with the values V….

• match_member: similar to match_value, but takes a pointer to the data member to compare;
that is, match_member<&E::value, V…> is equvialent to match_value<E, V…>. Note,
however, that match_member requires C++17 or newer, while match_value does not.

• catch_<Ex…>: Similar to match, but checks whether the caught std::exception object can be
dynamic_cast to any of the Ex types.

• if_not is a special predicate that takes any other predicate Pred and requires that an error
object of type E is available and that Pred evaluates to false. For example, if_not<match<E,
V…>> requires that an object e of type E is available, and that it does not compare equal to any of
the specified V….

Finally, the predicate system is easily extensible, see Predicates.

 See also Working with std::error_code, std::error_condition.

Binding Error Handlers in a std::tuple
Consider this snippet:

30

leaf::try_handle_all(

 [&]
 {
 return f(); // returns leaf::result<T>
 },

 [](my_error_enum x)
 {
 ...
 },

 [](read_file_error_enum y, e_file_name const & fn)
 {
 ...
 },

 []
 {
 ...
 });

try_handle_all | e_file_name

Looks pretty simple, but what if we need to attempt a different set of operations yet use the same
handlers? We could repeat the same thing with a different function passed as TryBlock for
try_handle_all:

31

leaf::try_handle_all(

 [&]
 {
 return g(); // returns leaf::result<T>
 },

 [](my_error_enum x)
 {
 ...
 },

 [](read_file_error_enum y, e_file_name const & fn)
 {
 ...
 },

 []
 {
 ...
 });

That works, but it is better to bind our error handlers in a std::tuple:

auto error_handlers = std::make_tuple(

 [](my_error_enum x)
 {
 ...
 },

 [](read_file_error_enum y, e_file_name const & fn)
 {
 ...
 },

 []
 {
 ...
 });

The error_handlers tuple can later be used with any error handling function:

32

leaf::try_handle_all(

 [&]
 {
 // Operations which may fail ①
 },

 error_handlers);

leaf::try_handle_all(

 [&]
 {
 // Different operations which may fail ②
 },

 error_handlers); ③

try_handle_all | error_info

① One set of operations which may fail…

② A different set of operations which may fail…

③ … both using the same error_handlers.

Error handling functions accept a std::tuple of error handlers in place of any error handler. The
behavior is as if the tuple is unwrapped in-place.

Transporting Error Objects Between Threads
Error objects are stored on the stack in an instance of the context class template in the scope of
e.g. try_handle_some, try_handle_all or try_catch functions. When using concurrency, we
need a mechanism to collect error objects in one thread, then use them to handle errors in another
thread.

LEAF offers two interfaces for this purpose, one using result<T>, and another designed for
programs that use exception handling.

Using result<T>

Let’s assume we have a task that we want to launch asynchronously, which produces a
task_result but could also fail:

leaf::result<task_result> task();

Because the task will run asynchronously, in case of a failure we need it to capture the relevant

33

error objects but not handle errors. To this end, in the main thread we bind our error handlers in a
std::tuple, which we will later use to handle errors from each completed asynchronous task (see
tutorial):

auto error_handlers = std::make_tuple(

 [](E1 e1, E2 e2)
 {
 //Deal with E1, E2

 return { };
 },

 [](E3 e3)
 {
 //Deal with E3

 return { };
 });

Why did we start with this step? Because we need to create a context object to collect the error
objects we need. We could just instantiate the context template with E1, E2 and E3, but that would
be prone to errors, since it could get out of sync with the handlers we use. Thankfully LEAF can
deduce the types we need automatically, we just need to show it our error_handlers:

std::shared_ptr<leaf::polymorphic_context> ctx = leaf::make_shared_context
(error_handlers);

The polymorphic_context type is an abstract base class that has the same members as any
instance of the context class template, allowing us to erase its exact type. In this case what we’re
holding in ctx is a context<E1, E2, E3>, where E1, E2 and E3 were deduced automatically from
the error_handlers tuple we passed to make_shared_context.

We’re now ready to launch our asynchronous task:

std::future<leaf::result<task_result>> launch_task() noexcept
{
 return std::async(
 std::launch::async,
 [&]
 {
 std::shared_ptr<leaf::polymorphic_context> ctx = leaf::make_shared_context
(error_handlers);
 return leaf::capture(ctx, &task);
 });
}

34

result | make_shared_context | capture

That’s it! Later when we get the std::future, we can process the returned
result<task_result> in a call to try_handle_some, using the error_handlers tuple we
created earlier:

//std::future<leaf::result<task_result>> fut;
fut.wait();

return leaf::try_handle_some(

 [&]() -> leaf::result<void>
 {
 BOOST_LEAF_AUTO(r, fut.get());
 //Success!
 return { }
 },

 error_handlers);

try_handle_some | result | BOOST_LEAF_AUTO

The reason this works is that in case the leaf::result<T> communicates a failure, it is able to
hold a shared_ptr<polymorphic_context> object. That is why earlier instead of calling task()
directly, we called leaf::capture: it calls the passed function and, in case that fails, it stores the
shared_ptr<polymorphic_context> we created in the returned result<T>, which now doesn’t
just communicate the fact that an error has occurred, but also holds the context object that
try_handle_some needs in order to supply a suitable handler with arguments.

 Follow this link to see a complete example program: capture_in_result.cpp.

Using Exception Handling

Let’s assume we have an asynchronous task which produces a task_result but could also throw:

task_result task();

Just like we saw in Using result<T>, first we will bind our error handlers in a std::tuple:

35

https://github.com/boostorg/leaf/blob/master/example/capture_in_result.cpp?ts=4

auto handle_errors = std::make_tuple(

 [](E1 e1, E2 e2)
 {
 //Deal with E1, E2

 return { };
 },

 [](E3 e3)
 {
 //Deal with E3

 return { };
 });

Launching the task looks the same as before, except that we don’t use result<T>:

std::future<task_result> launch_task()
{
 return std::async(
 std::launch::async,
 [&]
 {
 std::shared_ptr<leaf::polymorphic_context> ctx = leaf::make_shared_context(
&handle_error);
 return leaf::capture(ctx, &task);
 });
}

make_shared_context | capture

That’s it! Later when we get the std::future, we can process the returned task_result in a call
to try_catch, using the error_handlers we saved earlier, as if it was generated locally:

//std::future<task_result> fut;
fut.wait();

return leaf::try_catch(

 [&]
 {
 task_result r = fut.get(); // Throws on error
 //Success!
 },

 error_handlers);

36

try_catch

This works similarly to using result<T>, except that the
std::shared_ptr<polymorphic_context> is transported in an exception object (of unspecified
type which try_catch recognizes and then automatically unwraps the original exception).

 Follow this link to see a complete example program: capture_in_exception.cpp.

Classification of Failures
It is common for an interface to define an enum that lists all possible error codes that the API
reports. The benefit of this approach is that the list is complete and usually well documented:

enum error_code
{

 read_error,
 size_error,
 eof_error,

};

The disadvantage of such flat enums is that they do not support handling of a whole class of
failures. Consider the following LEAF error handler:

....
[](leaf::match<error_code, size_error, read_error, eof_error>, leaf::e_file_name const
& fn)
{
 std::cerr << "Failed to access " << fn.value << std::endl;
},
....

match | e_file_name

It will get called if the value of the error_code enum communicated with the failure is one of
size_error, read_error or eof_error. In short, the idea is to handle any input error.

But what if later we add support for detecting and reporting a new type of input error, e.g.
permissions_error? It is easy to add that to our error_code enum; but now our input error
handler won’t recognize this new input error — and we have a bug.

If we can use exceptions, the situation is better because exception types can be organized in a
hierarchy in order to classify failures:

37

https://github.com/boostorg/leaf/blob/master/example/capture_in_exception.cpp?ts=4

struct input_error: std::exception { };
struct read_error: input_error { };
struct size_error: input_error { };
struct eof_error: input_error { };

In terms of LEAF, our input error exception handler now looks like this:

[](input_error &, leaf::e_file_name const & fn)
{
 std::cerr << "Failed to access " << fn.value << std::endl;
},

This is future-proof, but still not ideal, because it is not possible to refine the classification of the
failure after the exception object has been thrown.

LEAF supports a novel style of error handling where the classification of failures does not use error
code values or exception type hierarchies. Instead of our error_code enum, we could define:

....
struct input_error { };
struct read_error { };
struct size_error { };
struct eof_error { };
....

With this in place, we could define a function file_read:

leaf::result<void> file_read(FILE & f, void * buf, int size)
{
 int n = fread(buf, 1, size, &f);

 if(ferror(&f))
 return leaf::new_error(input_error{}, read_error{}, leaf::e_errno{errno}); ①

 if(n!=size)
 return leaf::new_error(input_error{}, eof_error{}); ②

 return { };
}

result | new_error | e_errno

① This error is classified as input_error and read_error.

② This error is classified as input_error and eof_error.

Or, even better:

38

leaf::result<void> file_read(FILE & f, void * buf, int size)
{
 auto load = leaf::on_error(input_error{}); ①

 int n = fread(buf, 1, size, &f);

 if(ferror(&f))
 return leaf::new_error(read_error{}, leaf::e_errno{errno}); ②

 if(n!=size)
 return leaf::new_error(eof_error{}); ③

 return { };
}

result | on_error | new_error | e_errno

① Any error escaping this scope will be classified as input_error

② In addition, this error is classified as read_error.

③ In addition, this error is classified as eof_error.

This technique works just as well if we choose to use exception handling, we just call
leaf::exception instead of leaf::new_error:

void file_read(FILE & f, void * buf, int size)
{
 auto load = leaf::on_error(input_error{});

 int n = fread(buf, 1, size, &f);

 if(ferror(&f))
 throw leaf::exception(read_error{}, leaf::e_errno{errno});

 if(n!=size)
 throw leaf::exception(eof_error{});
}

on_error | exception | e_errno



If the type of the first argument passed to leaf::exception derives from
std::exception, it will be used to initialize the returned exception object taken
by throw. Here this is not the case, so the function returns a default-initialized
std::exception object, while the first (and any other) argument is associated
with the failure.

Now we can write a future-proof handler for any input_error:

39

....
[](input_error, leaf::e_file_name const & fn)
{
 std::cerr << "Failed to access " << fn.value << std::endl;
},
....

Remarkably, because the classification of the failure does not depend on error codes or on
exception types, this error handler can be used with try_catch if we use exception handling, or
with try_handle_some/try_handle_all if we do not.

Converting Exceptions to result<T>
It is sometimes necessary to catch exceptions thrown by a lower-level library function, and report
the error through different means, to a higher-level library which may not use exception handling.



Error handlers that take arguments of types that derive from std::exception
work correctly — regardless of whether the error object itself is thrown as an
exception, or loaded into a context. The technique described here is only needed
when the exception must be communicated through functions which are not
exception-safe, or are compiled with exception handling disabled.

Suppose we have an exception type hierarchy and a function compute_answer_throws:

class error_base: public std::exception { };
class error_a: public error_base { };
class error_b: public error_base { };
class error_c: public error_base { };

int compute_answer_throws()
{
 switch(rand()%4)
 {
 default: return 42;
 case 1: throw error_a();
 case 2: throw error_b();
 case 3: throw error_c();
 }
}

We can write a simple wrapper using exception_to_result, which calls
compute_answer_throws and switches to result<int> for error handling:

40

leaf::result<int> compute_answer() noexcept
{
 return leaf::exception_to_result<error_a, error_b>(
 []
 {
 return compute_answer_throws();
 });
}

result | exception_to_result

The exception_to_result template takes any number of exception types. All exception types
thrown by the passed function are caught, and an attempt is made to convert the exception object
to each of the specified types. Each successfully-converted slice of the caught exception object, as
well as the return value of std::current_exception, are copied and loaded, and in the end the
exception is converted to a result<T> object.

(In our example, error_a and error_b slices as communicated as error objects, but error_c
exceptions will still be captured by std::exception_ptr).

Here is a simple function which prints successfully computed answers, forwarding any error
(originally reported by throwing an exception) to its caller:

leaf::result<void> print_answer() noexcept
{
 BOOST_LEAF_AUTO(answer, compute_answer());
 std::cout << "Answer: " << answer << std::endl;
 return { };
}

result | BOOST_LEAF_AUTO

Finally, here is a scope that handles the errors — it will work correctly regardless of whether
error_a and error_b objects are thrown as exceptions or not.

41

leaf::try_handle_all(

 []() -> leaf::result<void>
 {
 BOOST_LEAF_CHECK(print_answer());
 return { };
 },

 [](error_a const & e)
 {
 std::cerr << "Error A!" << std::endl;
 },

 [](error_b const & e)
 {
 std::cerr << "Error B!" << std::endl;
 },

 []
 {
 std::cerr << "Unknown error!" << std::endl;
 });

try_handle_all | result | BOOST_LEAF_CHECK

 The complete program illustrating this technique is available here.

Using error_monitor to Report Arbitrary Errors from
C-callbacks
Communicating information pertaining to a failure detected in a C callback is tricky, because C
callbacks are limited to a specific static signature, which may not use C++ types.

LEAF makes this easy. As an example, we’ll write a program that uses Lua and reports a failure
from a C++ function registered as a C callback, called from a Lua program. The failure will be
propagated from C++, through the Lua interpreter (written in C), back to the C++ function which
called it.

C/C++ functions designed to be invoked from a Lua program must use the following signature:

int do_work(lua_State * L) ;

Arguments are passed on the Lua stack (which is accessible through L). Results too are pushed onto
the Lua stack.

42

https://github.com/boostorg/leaf/blob/master/example/exception_to_result.cpp?ts=4

First, let’s initialize the Lua interpreter and register a function, do_work, as a C callback available
for Lua programs to call:

std::shared_ptr<lua_State> init_lua_state() noexcept
{
 std::shared_ptr<lua_State> L(lua_open(), &lua_close); ①

 lua_register(&*L, "do_work", &do_work); ②

 luaL_dostring(&*L, "\ ③
\n function call_do_work()\
\n return do_work()\
\n end");

 return L;
}

① Create a new lua_State. We’ll use std::shared_ptr for automatic cleanup.

② Register the do_work C++ function as a C callback, under the global name do_work. With this,
calls from Lua programs to do_work will land in the do_work C++ function.

③ Pass some Lua code as a C string literal to Lua. This creates a global Lua function called
call_do_work, which we will later ask Lua to execute.

Next, let’s define our enum used to communicate do_work failures:

enum do_work_error_code
{
 ec1=1,
 ec2
};

We’re now ready to define the do_work callback function:

int do_work(lua_State * L) noexcept
{
 bool success = rand() % 2; ①
 if(success)
 {
 lua_pushnumber(L, 42); ②
 return 1;
 }
 else
 {
 (void) leaf::new_error(ec1); ③
 return luaL_error(L, "do_work_error"); ④
 }
}

43

new_error | load

① "Sometimes" do_work fails.

② In case of success, push the result on the Lua stack, return back to Lua.

③ Generate a new error_id and associate a do_work_error_code with it. Normally, we’d return
this in a leaf::result<T>, but the do_work function signature (required by Lua) does not
permit this.

④ Tell the Lua interpreter to abort the Lua program.

Now we’ll write the function that calls the Lua interpreter to execute the Lua function
call_do_work, which in turn calls do_work. We’ll return result<int>, so that our caller can get
the answer in case of success, or an error:

leaf::result<int> call_lua(lua_State * L)
{
 lua_getfield(L, LUA_GLOBALSINDEX, "call_do_work");

 error_monitor cur_err;
 if(int err = lua_pcall(L, 0, 1, 0)) ①
 {
 auto load = leaf::on_error(e_lua_error_message{lua_tostring(L,1)}); ②
 lua_pop(L,1);

 return cur_err.assigned_error_id().load(e_lua_pcall_error{err}); ③
 }
 else
 {
 int answer = lua_tonumber(L, -1); ④
 lua_pop(L, 1);
 return answer;
 }
}

result | on_error | error_monitor

① Ask the Lua interpreter to call the global Lua function call_do_work.

② on_error works as usual.

③ load will use the error_id generated in our Lua callback. This is the same error_id the
on_error uses as well.

④ Success! Just return the int answer.

Finally, here is the main function which exercises call_lua, each time handling any failure:

44

int main() noexcept
{
 std::shared_ptr<lua_State> L=init_lua_state();

 for(int i=0; i!=10; ++i)
 {
 leaf::try_handle_all(

 [&]() -> leaf::result<void>
 {
 BOOST_LEAF_AUTO(answer, call_lua(&*L));
 std::cout << "do_work succeeded, answer=" << answer << '\n'; ①
 return { };
 },

 [](do_work_error_code e) ②
 {
 std::cout << "Got do_work_error_code = " << e << "!\n";
 },

 [](e_lua_pcall_error const & err, e_lua_error_message const & msg) ③
 {
 std::cout << "Got e_lua_pcall_error, Lua error code = " << err.value << ", "
<< msg.value << "\n";
 },

 [](leaf::error_info const & unmatched)
 {
 std::cerr <<
 "Unknown failure detected" << std::endl <<
 "Cryptic diagnostic information follows" << std::endl <<
 unmatched;
 });
 }

try_handle_all | result | BOOST_LEAF_AUTO | error_info

① If the call to call_lua succeeded, just print the answer.

② Handle do_work failures.

③ Handle all other lua_pcall failures.

 Follow this link to see the complete program: lua_callback_result.cpp.



When using Lua with C++, we need to protect the Lua interpreter from exceptions
that may be thrown from C++ functions installed as lua_CFunction callbacks.
Here is the program from this section rewritten to use a C++ exception to safely
communicate errors out of the do_work function: lua_callback_eh.cpp.

45

https://github.com/boostorg/leaf/blob/master/example/lua_callback_result.cpp?ts=4
https://github.com/boostorg/leaf/blob/master/example/lua_callback_eh.cpp?ts=4

Diagnostic Information
LEAF is able to automatically generate diagnostic messages that include information about all error
objects available to error handlers:

enum class error_code
{
 read_error,
 write_error
};

....

leaf::try_handle_all(

 []() -> leaf::result<void> ①
 {
 ...
 return leaf::new_error(error_code::write_error, leaf::e_file_name{ "file.txt" }
);
 },

 [](leaf::match<error_code, error_code::read_error>) ②
 {
 std::cerr << "Read error!" << std::endl;
 },

 [](leaf::verbose_diagnostic_info const & info) ③
 {
 std::cerr << "Unrecognized error detected, cryptic diagnostic information
follows.\n" << info;
 });

① We handle all failures that occur in this try block.

② One or more error handlers that should handle all possible failures.

③ The "catch all" error handler is required by try_handle_all. It will be called if LEAF is unable
to use another error handler.

The verbose_diagnostic_info output for the snippet above tells us that we got an error_code
with value 1 (write_error), and an object of type e_file_name with "file.txt" stored in its
.value:

Unrecognized error detected, cryptic diagnostic information follows.
leaf::verbose_diagnostic_info for Error ID = 1:
[with Name = error_code]: 1
Unhandled error objects:
[with Name = boost::leaf::e_file_name]: file.txt

46

To print each error object, LEAF attempts to bind an unqualified call to operator<<, passing a
std::ostream and the error object. If that fails, it will also attempt to bind operator<< that takes
the .value of the error type. If that also does not compile, the error object value will not appear in
diagnostic messages, though LEAF will still print its type.

Even with error types that define a printable .value, the user may still want to overload
operator<< for the enclosing struct, e.g.:

struct e_errno
{
 int value;

 friend std::ostream & operator<<(std::ostream & os, e_errno const & e)
 {
 return os << "errno = " << e.value << ", \"" << strerror(e.value) << '"';
 }
};

The e_errno type above is designed to hold errno values. The defined operator<< overload will
automatically include the output from strerror when e_errno values are printed (LEAF defines
e_errno in <boost/leaf/common.hpp>, together with other commonly-used error types).

Using verbose_diagnostic_info comes at a cost. Normally, when the program attempts to
communicate error objects of types which are not used in any error handling scope in the current
call stack, they are discarded, which saves cycles. However, if an error handler is provided that
takes verbose_diagnostic_info argument, before such objects are discarded, they are printed
and appended to a std::string (this is the case with e_file_name in our example above). Such
objects appear under Unhandled error objects in the output from verbose_diagnostic_info.

If handling verbose_diagnostic_info is considered too costly, use diagnostic_info instead:

47

leaf::try_handle_all(

 []() -> leaf::result<void>
 {
 ...
 return leaf::new_error(error_code::write_error, leaf::e_file_name{ "file.txt" }
);
 },

 [](leaf::match<error_code, error_code::read_error>)
 {
 std::cerr << "Read error!" << std::endl;
 },

 [](leaf::diagnostic_info const & info)
 {
 std::cerr << "Unrecognized error detected, cryptic diagnostic information
follows.\n" << info;
 });

In this case, the output may look like this:

Unrecognized error detected, cryptic diagnostic information follows.
leaf::diagnostic_info for Error ID = 1:
[with Name = error_code]: 1
Detected 1 attempt to communicate an unexpected error object of type [with Name =
boost::leaf::e_file_name]

Notice how the diagnostic information for e_file_name changed: LEAF no longer prints it before
discarding it, and so diagnostic_info can only inform about the type of the discarded object, but
not its value.



The automatically-generated diagnostic messages are developer-friendly, but not
user-friendly. Therefore, operator<< overloads for error types should only print
technical information in English, and should not attempt to localize strings or to
format a user-friendly message; this should be done in error handling functions
specifically designed for that purpose.

Working with std::error_code,
std::error_condition

Introduction

The relationship between std::error_code and std::error_condition is not easily understood
from reading the standard specifications. This section explains how they’re supposed to be used,

48

and how LEAF interacts with them.

The idea behind std::error_code is to encode both an integer value representing an error code,
as well as the domain of that value. The domain is represented by a std::error_category
reference. Conceptually, a std::error_code is like a pair<std::error_category const &,
int>.

Let’s say we have this enum:

enum class libfoo_error
{
 e1 = 1,
 e2,
 e3
};

We want to be able to transport libfoo_error values in std::error_code objects. This erases
their static type, which enables them to travel freely across API boundaries. To this end, we must
define a std::error_category that represents our libfoo_error type:

std::error_category const & libfoo_error_category()
{
 struct category: std::error_category
 {
 char const * name() const noexcept override
 {
 return "libfoo";
 }

 std::string message(int code) const override
 {
 switch(libfoo_error(code))
 {
 case libfoo_error::e1: return "e1";
 case libfoo_error::e2: return "e2";
 case libfoo_error::e3: return "e3";
 default: return "error";
 }
 }
 };

 static category c;
 return c;
}

We also need to inform the standard library that libfoo_error is compatible with
std::error_code, and provide a factory function which can be used to make std::error_code
objects out of libfoo_error values:

49

namespace std
{
 template <>
 struct is_error_code_enum<libfoo_error>: std::true_type
 {
 };
}

std::error_code make_error_code(libfoo_error e)
{
 return std::error_code(int(e), libfoo_error_category());
}

With this in place, if we receive a std::error_code, we can easily check if it represents some of
the libfoo_error values we’re interested in:

std::error_code f();

....
auto ec = f();
if(ec == libfoo_error::e1 || ec == libfoo_error::e2)
{
 // We got either a libfoo_error::e1 or a libfoo_error::e2
}

This works because the standard library detects that
std::is_error_code_enum<libfoo_error>::value is true, and then uses make_error_code
to create a std::error_code object it actually uses to compare to ec.

So far so good, but remember, the standard library defines another type also,
std::error_condition. The first confusing thing is that in terms of its physical representation,
std::error_condition is identical to std::error_code; that is, it is also like a pair of
std::error_category reference and an int. Why do we need two different types which use
identical physical representation?

The key to answering this question is to understand that std::error_code objects are designed to
be returned from functions to indicate failures. In contrast, std::error_condition objects are
never supposed to be communicated; their purpose is to interpret the std::error_code values
being communicated. The idea is that in a given program there may be multiple different "physical"
(maybe platform-specific) std::error_code values which all indicate the same "logical"
std::error_condition.

This leads us to the second confusing thing about std::error_condition: it uses the same
std::error_category type, but for a completely different purpose: to specify what
std::error_code values are equivalent to what std::error_condition values.

Let’s say that in addition to libfoo, our program uses another library, libbar, which
communicates failures in terms of std::error_code with a different error category. Perhaps

50

libbar_error looks like this:

enum class libbar_error
{
 e1 = 1,
 e2,
 e3,
 e4
};

// Boilerplate omitted:
// - libbar_error_category()
// - specialization of std::is_error_code_enum
// - make_error_code factory function for libbar_error.

We can now use std::error_condition to define the logical error conditions represented by the
std::error_code values communicated by libfoo and libbar:

enum class my_error_condition ①
{
 c1 = 1,
 c2
};

std::error_category const & libfoo_error_category() ②
{
 struct category: std::error_category
 {
 char const * name() const noexcept override
 {
 return "my_error_condition";
 }

 std::string message(int cond) const override
 {
 switch(my_error_condition(code))
 {
 case my_error_condition::c1: return "c1";
 case my_error_condition::c2: return "c2";
 default: return "error";
 }
 }

 bool equivalent(std::error_code const & code, int cond) const noexcept
 {
 switch(my_error_condition(cond))
 {
 case my_error_condition::c1: ③
 return

51

 code == libfoo_error::e1 ||
 code == libbar_error::e3 ||
 code == libbar_error::e4;
 case my_error_condition::c2: ④
 return
 code == libfoo_error::e2 ||
 code == libbar_error::e1 ||
 code == libbar_error::e2;
 default:
 return false;
 }
 }
 };

 static category c;
 return c;
}

namespace std
{
 template <> ⑤
 class is_error_condition_enum<my_error_condition>: std::true_type
 {
 };
}

std::error_condition make_error_condition(my_error_condition e) ⑥
{
 return std::error_condition(int(e), my_error_condition_error_category());
}

① Enumeration of the two logical error conditions, c1 and c2.

② Define the std::error_category for std::error_condition objects that represent a
my_error_condition.

③ Here we specify that any of libfoo:error::e1, libbar_error::e3 and libbar_error::e4
are logically equivalent to my_error_condition::c1, and that…

④ …any of libfoo:error::e2, libbar_error::e1 and libbar_error::e2 are logically
equivalent to my_error_condition::c2.

⑤ This specialization tells the standard library that the my_error_condition enum is designed to
be used with std::error_condition.

⑥ The factory function to make std::error_condition objects out of my_error_condition
values.

Phew!

Now, if we have a std::error_code object ec, we can easily check if it is equivalent to
my_error_condition::c1 like so:

52

if(ec == my_error_condition::c1)
{
 // We have a c1 in our hands
}

Again, remember that beyond defining the std::error_category for std::error_condition
objects initialized with a my_error_condition value, we don’t need to interact with the actual
std::error_condition instances: they’re created when needed to compare to a
std::error_code, and that’s pretty much all they’re good for.

Support in LEAF

The match predicate can be used as an argument to a LEAF error handler to match a
std::error_code with a given error condition. For example, to handle
my_error_condition::c1 (see above), we could use:

leaf::try_handle_some(

 []
 {
 return f(); // returns leaf::result<T>
 },

 [](leaf::match<std::error_code, my_error_condition::c1> m)
 {
 assert(m.matched == my_error_condition::c1);

 });

See match for more examples.

Boost Exception Integration
Instead of the boost::get_error_info API defined by Boost Exception, it is possible to use LEAF
error handlers directly. Consider the following use of boost::get_error_info:

53

https://www.boost.org/doc/libs/release/libs/exception/doc/get_error_info.html

typedef boost::error_info<struct my_info_, int> my_info;

void f(); // Throws using boost::throw_exception

void g()
{
 try
 {
 f();
 },
 catch(boost::exception & e)
 {
 if(int const * x = boost::get_error_info<my_info>(e))
 std::cerr << "Got my_info with value = " << *x;
 });
}

We can rewrite g to access my_info using LEAF:

#include <boost/leaf/handle_errors.hpp>

void g()
{
 leaf::try_catch(

 []
 {
 f();
 },

 [](my_info x)
 {
 std::cerr << "Got my_info with value = " << x.value();
 });
}

try_catch

Taking my_info means that the handler will only be selected if the caught exception object carries
my_info (which LEAF accesses via boost::get_error_info).

The use of match is also supported:

54

void g()
{
 leaf::try_catch(

 []
 {
 f();
 },

 [](leaf::match_value<my_info, 42>)
 {
 std::cerr << "Got my_info with value = 42";
 });
}

Above, the handler will be selected if the caught exception object carries my_info with .value()
equal to 42.

55

Examples
See github.

56

https://github.com/boostorg/leaf/tree/master/example

Synopsis
This section lists each public header file in LEAF, documenting the definitions it provides.

LEAF headers are designed to minimize coupling:

• Headers needed to report or forward but not handle errors are lighter than headers providing
error handling functionality.

• Headers that provide exception handling or throwing functionality are separate from headers
that provide error handling or reporting but do not use exceptions.

A standalone single-header option is available; please see Distribution.

Error Reporting
error.hpp

57

#include <boost/leaf/error.hpp>

namespace boost { namespace leaf {

 class error_id
 {
 public:

 error_id() noexcept;

 template <class Enum>
 error_id(Enum e, typename std::enable_if<std::is_error_code_enum<Enum>::
value, Enum>::type * = 0) noexcept;

 error_id(std::error_code const & ec) noexcept;

 int value() const noexcept;
 explicit operator bool() const noexcept;

 std::error_code to_error_code() const noexept;

 friend bool operator==(error_id a, error_id b) noexcept;
 friend bool operator!=(error_id a, error_id b) noexcept;
 friend bool operator<(error_id a, error_id b) noexcept;

 template <class... Item>
 error_id load(Item && ... item) const noexcept;

 friend std::ostream & operator<<(std::ostream & os, error_id x);
 };

 bool is_error_id(std::error_code const & ec) noexcept;

 template <class... Item>
 error_id new_error(Item && ... item) noexcept;

 error_id current_error() noexcept;

 //

 class polymorphic_context
 {
 protected:

 polymorphic_context() noexcept = default;
 ~polymorphic_context() noexcept = default;

 public:

 virtual void activate() noexcept = 0;

58

 virtual void deactivate() noexcept = 0;
 virtual bool is_active() const noexcept = 0;

 virtual void propagate() noexcept = 0;

 virtual void print(std::ostream &) const = 0;
 };

 //

 template <class Ctx>
 class context_activator
 {
 context_activator(context_activator const &) = delete;
 context_activator & operator=(context_activator const &) = delete;

 public:

 explicit context_activator(Ctx & ctx) noexcept;
 context_activator(context_activator &&) noexcept;
 ~context_activator() noexcept;
 };

 template <class Ctx>
 context_activator<Ctx> activate_context(Ctx & ctx) noexcept;

 template <class R>
 struct is_result_type: std::false_type
 {
 };

 template <class R>
 struct is_result_type<R const>: is_result_type<R>
 {
 };

} }

#define BOOST_LEAF_ASSIGN(v, r)\
 auto && <<temp>> = r;\
 if(!<<temp>>)\
 return <<temp>>.error();\
 v = std::forward<decltype(<<temp>>)>(<<temp>>).value()

#define BOOST_LEAF_AUTO(v, r)\
 BOOST_LEAF_ASSIGN(auto v, r)

#define BOOST_LEAF_CHECK(r)\
 auto && <<temp>> = r;\
 if(<<temp>>)\
 ;\

59

 else\
 return <<temp>>.error()

#define BOOST_LEAF_NEW_ERROR <<inject e_source_location voodoo>>
::boost::leaf::new_error

Reference: error_id | is_error_id | new_error | current_error |
polymorphic_context | context_activator | activate_context | is_result_type |
BOOST_LEAF_ASSIGN | BOOST_LEAF_AUTO | BOOST_LEAF_CHECK | BOOST_LEAF_NEW_ERROR

common.hpp

#include <boost/leaf/common.hpp>

namespace boost { namespace leaf {

 struct e_api_function { char const * value; };

 struct e_file_name { std::string value; };

 struct e_type_info_name { char const * value; };

 struct e_at_line { int value; };

 struct e_errno
 {
 int value;
 friend std::ostream & operator<<(std::ostream &, e_errno const &);
 };

 namespace windows
 {
 struct e_LastError
 {
 unsigned value;
 friend std::ostream & operator<<(std::ostream &, e_LastError const &);
 };
 }

} }

Reference: e_api_function | e_file_name | e_at_line | e_type_info_name |
e_source_location | e_errno | e_LastError

result.hpp

60

#include <boost/leaf/result.hpp>

namespace boost { namespace leaf {

 template <class T>
 class result
 {
 public:

 result() noexcept;
 result(T && v) noexcept;
 result(T const & v);

 template <class U>
 result(U && u, <<enabled_if_T_can_be_inited_with_U>>);

 result(error_id err) noexcept;
 result(std::shared_ptr<polymorphic_context> && ctx) noexcept;

 template <class Enum>
 result(Enum e, typename std::enable_if<std::is_error_code_enum<Enum>::value,
Enum>::type * = 0) noexcept;

 result(std::error_code const & ec) noexcept;

 result(result && r) noexcept;

 template <class U>
 result(result<U> && r) noexcept;

 result & operator=(result && r) noexcept;

 template <class U>
 result & operator=(result<U> && r) noexcept;

 bool has_value() const noexcept;
 bool has_error() const noexcept;
 explicit operator bool() const noexcept;

 T const & value() const;
 T & value();

 T const * operator->() const noexcept;
 T * operator->() noexcept;

 T const & operator*() const noexcept;
 T & operator*() noexcept;

 <<unspecified-type>> error() noexcept;

61

 template <class... Item>
 error_id load(Item && ... item) noexcept;
 };

 template <>
 class result<void>
 {
 public:

 result() noexcept;

 result(error_id err) noexcept;
 result(std::shared_ptr<polymorphic_context> && ctx) noexcept;

 template <class Enum>
 result(Enum e, typename std::enable_if<std::is_error_code_enum<Enum>::value,
Enum>::type * = 0) noexcept;

 result(std::error_code const & ec) noexcept;

 result(result && r) noexcept;

 template <class U>
 result(result<U> && r) noexcept;

 result & operator=(result && r) noexcept;

 template <class U>
 result & operator=(result<U> && r) noexcept;

 explicit operator bool() const noexcept;

 void value() const;

 <<unspecified-type>> error() noexcept;

 template <class... Item>
 error_id load(Item && ... item) noexcept;
 };

 struct bad_result: std::exception { };

 template <class T>
 struct is_result_type<result<T>>: std::true_type
 {
 };

} }

Reference: result | is_result_type

62

on_error.hpp

#include <boost/leaf/on_error.hpp>

namespace boost { namespace leaf {

 template <class... Item>
 <<unspecified-type>> on_error(Item && ... e) noexcept;

 class error_monitor
 {
 public:

 error_monitor() noexcept;

 error_id check() const noexcept;
 error_id assigned_error_id() const noexcept;
 };

} }

Reference: on_error | error_monitor

exception.hpp

63

#include <boost/leaf/exception.hpp>

namespace boost { namespace leaf {

 template <class Ex, class... E> ①
 <<unspecified-exception-type>> exception(Ex &&, E && ...) noexcept;

 template <class E1, class... E> ②
 <<unspecified-exception-type>> exception(E1 &&, E && ...) noexcept;

 <<unspecified-exception-type>> exception() noexcept;

 template <class Ex, class... E> ①
 <<unspecified-exception-type>> exception(error_id id, Ex &&, E && ...)
noexcept;

 template <class E1, class... E> ②
 <<unspecified-exception-type>> exception(error_id id, E1 &&, E && ...)
noexcept;

 <<unspecified-exception-type>> exception(error_id id) noexcept;

 template <class... Ex, class F>
 <<result<T>-deduced>> exception_to_result(F && f) noexcept;

} }

#define BOOST_LEAF_EXCEPTION <<inject e_source_location voodoo>>
::boost::leaf::exception

#define BOOST_LEAF_THROW_EXCEPTION <<inject e_source_location + invoke
boost::throw_exception voodoo>> ::boost::leaf::exception

Reference: exception | BOOST_LEAF_EXCEPTION | BOOST_LEAF_THROW_EXCEPTION

① Only enabled if std::is_base_of<std::exception, Ex>::value.

② Only enabled if !std::is_base_of<std::exception, E1>::value.

capture.hpp

64

#include <boost/leaf/capture.hpp>

namespace boost { namespace leaf {

 template <class F, class... A>
 decltype(std::declval<F>()(std::forward<A>(std::declval<A>())...))
 capture(std::shared_ptr<polymorphic_context> && ctx, F && f, A... a);

} }

Reference: capture | exception_to_result

Error Handling
context.hpp

65

#include <boost/leaf/context.hpp>

namespace boost { namespace leaf {

 template <class... E>
 class context
 {
 context(context const &) = delete;
 context & operator=(context const &) = delete;

 public:

 context() noexcept;
 context(context && x) noexcept;
 ~context() noexcept;

 void activate() noexcept;
 void deactivate() noexcept;
 bool is_active() const noexcept;

 void propagate () noexcept;

 void print(std::ostream & os) const;

 template <class R, class... H>
 R handle_error(R &, H && ...) const;
 };

 //

 template <class... H>
 using context_type_from_handlers = typename <<unspecified>>::type;

 template <class... H>
 BOOST_LEAF_CONSTEXPR context_type_from_handlers<H...> make_context() noexcept;

 template <class... H>
 BOOST_LEAF_CONSTEXPR context_type_from_handlers<H...> make_context(H && ...)
noexcept;

 template <class... H>
 context_ptr make_shared_context() noexcept;

 template <class... H>
 context_ptr make_shared_context(H && ...) noexcept;

} }

Reference: context | context_type_from_handlers | make_context |
make_shared_context

66

handle_errors.hpp

67

#include <boost/leaf/handle_errors.hpp>

namespace boost { namespace leaf {

 template <class TryBlock, class... H>
 typename std::decay<decltype(std::declval<TryBlock>()().value())>::type
 try_handle_all(TryBlock && try_block, H && ... h);

 template <class TryBlock, class... H>
 typename std::decay<decltype(std::declval<TryBlock>()())>::type
 try_handle_some(TryBlock && try_block, H && ... h);

 template <class TryBlock, class... H>
 typename std::decay<decltype(std::declval<TryBlock>()())>::type
 try_catch(TryBlock && try_block, H && ... h);

 //

 class error_info
 {
 //No public constructors

 public:

 error_id error() const noexcept;

 bool exception_caught() const noexcept;
 std::exception const * exception() const noexcept;

 friend std::ostream & operator<<(std::ostream & os, error_info const & x);
 };

 class diagnostic_info: public error_info
 {
 //No public constructors

 friend std::ostream & operator<<(std::ostream & os, diagnostic_info const & x
);
 };

 class verbose_diagnostic_info: public error_info
 {
 //No public constructors

 friend std::ostream & operator<<(std::ostream & os, diagnostic_info const & x
);
 };

} }

68

Reference: try_handle_all | try_handle_some | try_catch | error_info |
diagnostic_info | verbose_diagnostic_info

pred.hpp

69

#include <boost/leaf/pred.hpp>

namespace boost { namespace leaf {

 template <class T>
 struct is_predicate: std::false_type
 {
 };

 template <class E, auto... V>
 struct match
 {
 E matched;

 // Other members not specified
 };

 template <class E, auto... V>
 struct is_predicate<match<E, V...>>: std::true_type
 {
 };

 template <class E, auto... V>
 struct match_value
 {
 E matched;

 // Other members not specified
 };

 template <class E, auto... V>
 struct is_predicate<match_value<E, V...>>: std::true_type
 {
 };

 template <auto, auto...>
 struct match_member;

 template <class E, class T, T E::* P, auto... V>
 struct member<P, V...>
 {
 E matched;

 // Other members not specified
 };

 template <auto P, auto... V>
 struct is_predicate<match_member<P, V...>>: std::true_type
 {
 };

70

 template <class... Ex>
 struct catch_
 {
 std::exception const & matched;

 // Other members not specified
 };

 template <class Ex>
 struct catch_<Ex>
 {
 Ex const & matched;

 // Other members not specified
 };

 template <class... Ex>
 struct is_predicate<catch_<Ex...>>: std::true_type
 {
 };

 template <class Pred>
 struct if_not
 {
 E matched;

 // Other members not specified
 };

 template <class Pred>
 struct is_predicate<if_not<Pred>>: std::true_type
 {
 };

 template <class ErrorCodeEnum>
 bool category(std::error_code const & ec) noexcept;

 template <class Enum, class EnumType = Enum>
 struct condition;

} }

Reference: match | match_value | match_member | catch_ | if_not | category |
condition

71

Reference: Functions

 The contents of each Reference section are organized alphabetically.

activate_context

#include <boost/leaf/error.hpp>

namespace boost { namespace leaf {

 template <class Ctx>
 context_activator<Ctx> activate_context(Ctx & ctx) noexcept
 {
 return context_activator<Ctx>(ctx);
 }

} }

context_activator

Example:

leaf::context<E1, E2, E3> ctx;

{
 auto active_context = activate_context(ctx); ①
} ②

① Activate ctx.

② Automatically deactivate ctx.

capture

#include <boost/leaf/capture.hpp>

namespace boost { namespace leaf {

 template <class F, class... A>
 decltype(std::declval<F>()(std::forward<A>(std::declval<A>())...))
 capture(std::shared_ptr<polymorphic_context> && ctx, F && f, A... a);

} }

polymorphic_context

This function can be used to capture error objects stored in a context in one thread and transport

72

them to a different thread for handling, either in a result<T> object or in an exception.

Returns:

The same type returned by F.

Effects:

Uses an internal context_activator to activate *ctx, then invokes
std::forward<F>(f)(std::forward<A>(a)…). Then:

• If the returned value r is not a result<T> type (see is_result_type), it is forwarded to the
caller.

• Otherwise:

◦ If !r, the return value of capture is initialized with ctx;


An object of type leaf::result<T> can be initialized with a
std::shared_ptr<leaf::polymorphic_context>.

◦ otherwise, it is initialized with r.

In case f throws, capture catches the exception in a std::exception_ptr, and throws a
different exception of unspecified type that transports both the std::exception_ptr as well as
ctx. This exception type is recognized by try_catch, which automatically unpacks the original
exception and propagates the contents of *ctx (presumably, in a different thread).

 See also Transporting Error Objects Between Threads from the Tutorial.

context_type_from_handlers

#include <boost/leaf/context.hpp>

namespace boost { namespace leaf {

 template <class... H>
 using context_type_from_handlers = typename <<unspecified>>::type;

} }

73

Example:

auto error_handlers = std::make_tuple(

 [](e_this const & a, e_that const & b)
 {

 },

 [](leaf::diagnostic_info const & info)
 {

 },
 );

leaf::context_type_from_handlers<decltype(error_handlers)> ctx; ①

① ctx will be of type context<e_this, e_that>, deduced automatically from the specified error
handlers.


Alternatively, a suitable context may be created by calling make_context, or
allocated dynamically by calling make_shared_context.

current_error

#include <boost/leaf/error.hpp>

namespace boost { namespace leaf {

 error_id current_error() noexcept;

} }

Returns:

The error_id value returned the last time new_error was invoked from the calling thread.

 See also on_error.

exception

74

#include <boost/leaf/exception.hpp>

namespace boost { namespace leaf {

 template <class Ex, class... E> ①
 <<unspecified>> exception(Ex && ex, E && ... e) noexcept;

 template <class E1, class... E> ②
 <<unspecified>> exception(E1 && e1, E && ... e) noexcept;

 <<unspecified>> exception() noexcept; ③

 template <class Ex, class... E> ④
 <<unspecified>> exception(error_id id, Ex && ex, E && ... e) noexcept;

 template <class E1, class... E> ⑤
 <<unspecified>> exception(error_id id, E1 && e1, E && ... e) noexcept;

 <<unspecified>> exception(error_id id) noexcept; ⑥

} }

The exception function is overloaded: it can be invoked with no arguments, or else there are
several alternatives, selected using std::enable_if based on the type of the passed arguments:

① Selected if the first argument is not of type error_id and is an exception object, that is, iff Ex
derives publicly from std::exception. In this case the return value is of unspecified type
which derives publicly from Ex and from class error_id, such that:

• its Ex subobject is initialized by std::forward<Ex>(ex);

• its error_id subobject is initialized by new_error(std::forward<E>(e)…).

② Selected if the first argument is not of type error_id and is not an exception object. In this case
the return value is of unspecified type which derives publicly from std::exception and from
class error_id, such that:

• its std::exception subobject is default-initialized;

• its error_id subobject is initialized by new_error(std::forward<E1>(e1),

std::forward<E>(e)…).

③ If the fuction is invoked without arguments, the return value is of unspecified type which
derives publicly from std::exception and from class error_id, such that:

• its std::exception subobject is default-initialized;

• its error_id subobject is initialized by new_error().

④ Selected if the first argument is of type error_id and the second argument is an exception
object, that is, iff Ex derives publicly from std::exception. In this case the return value is of
unspecified type which derives publicly from Ex and from class error_id, such that:

• its Ex subobject is initialized by std::forward<Ex>(ex);

75

• its error_id subobject is initialized by id.load(std::forward<E>(e)…).

⑤ Selected if the first argument is of type error_id and the second argument is not an exception
object. In this case the return value is of unspecified type which derives publicly from
std::exception and from class error_id, such that:

• its std::exception subobject is default-initialized;

• its error_id subobject is initialized by id.load(std::forward<E1>(e1),

std::forward<E>(e)…).

⑥ If exception is invoked with just an error_id object, the return value is of unspecified type
which derives publicly from std::exception and from class error_id, such that:

• its std::exception subobject is default-initialized;

• its error_id subobject is initialized by copying from id.


The first three overloads return an exception object that is associated with a new
error_id. The second three overloads return an exception object that is
associated with the specified error_id.

Example 1:

struct my_exception: std::exception { };

throw leaf::exception(my_exception{}); ①

① Throws an exception of a type that derives from error_id and from my_exception (because
my_exception derives from std::exception).

Example 2:

enum class my_error { e1=1, e2, e3 }; ①

throw leaf::exception(my_error::e1);

① Throws an exception of a type that derives from error_id and from std::exception (because
my_error does not derive from std::exception).


To automatically capture __FILE__, __LINE__ and __FUNCTION__ with the
returned object, use BOOST_LEAF_EXCEPTION instead of leaf::exception.

exception_to_result

76

#include <boost/leaf/exception.hpp>

namespace boost { namespace leaf {

 template <class... Ex, class F>
 <<result<T>-deduced>> exception_to_result(F && f) noexcept;

} }

This function can be used to catch exceptions from a lower-level library and convert them to
result<T>.

Returns:

Where f returns a type T, exception_to_result returns leaf::result<T>.

Effects:

1. Catches all exceptions, then captures std::current_exception in a std::exception_ptr
object, which is loaded with the returned result<T>.

2. Attempts to convert the caught exception, using dynamic_cast, to each type Exi in Ex…. If
the cast to Exi succeeds, the Exi slice of the caught exception is loaded with the returned
result<T>.



An error handler that takes an argument of an exception type (that is, of a type
that derives from std::exception) will work correctly whether the object is
thrown as an exception or communicated via new_error (or converted using
exception_to_result).

Example:

int compute_answer_throws();

//Call compute_answer, convert exceptions to result<int>
leaf::result<int> compute_answer()
{
 return leaf::exception_to_result<ex_type1, ex_type2>(compute_answer_throws());
}

At a later time we can invoke try_handle_some / try_handle_all as usual, passing handlers that
take ex_type1 or ex_type2, for example by reference:

77

return leaf::try_handle_some(

 [] -> leaf::result<void>
 {
 BOOST_LEAF_AUTO(answer, compute_answer());
 //Use answer

 return { };
 },

 [](ex_type1 & ex1)
 {
 //Handle ex_type1

 return { };
 },

 [](ex_type2 & ex2)
 {
 //Handle ex_type2

 return { };
 },

 [](std::exception_ptr const & p)
 {
 //Handle any other exception from compute_answer.

 return { };
 });

try_handle_some | result | BOOST_LEAF_AUTO



When a handler takes an argument of an exception type (that is, a type that
derives from std::exception), if the object is thrown, the argument will be
matched dynamically (using dynamic_cast); otherwise (e.g. after being converted
by exception_to_result) it will be matched based on its static type only (which
is the same behavior used for types that do not derive from std::exception).

 See also Converting Exceptions to result<T> from the tutorial.

make_context

78

#include <boost/leaf/context.hpp>

namespace boost { namespace leaf {

 template <class... H>
 context_type_from_handlers<H...> make_context() noexcept
 {
 return { };
 }

 template <class... H>
 context_type_from_handlers<H...> make_context(H && ...) noexcept
 {
 return { };
 }

} }

context_type_from_handlers

Example:

auto ctx = leaf::make_context(①
 [](e_this) { },
 [](e_that) { });

① decltype(ctx) is leaf::context<e_this, e_that>.

make_shared_context

79

#include <boost/leaf/context.hpp>

namespace boost { namespace leaf {

 template <class... H>
 context_ptr make_shared_context() noexcept
 {
 return std::make_shared<leaf_detail::polymorphic_context_impl
<context_type_from_handlers<H...>>>();
 }

 template <class... H>
 context_ptr make_shared_context(H && ...) noexcept
 {
 return std::make_shared<leaf_detail::polymorphic_context_impl
<context_type_from_handlers<H...>>>();
 }

} }

context_type_from_handlers

 See also Transporting Error Objects Between Threads from the tutorial.

new_error

#include <boost/leaf/error.hpp>

namespace boost { namespace leaf {

 template <class... Item>
 error_id new_error(Item && ... item) noexcept;

} }

Requires:

Each of the Item… types must be no-throw movable.

Effects:

As if:

error_id id = <<generate-new-unique-id>>;
return id.load(std::forward<Item>(item)...);

Returns:

A new error_id value, which is unique across the entire program.

80

Ensures:

id.value()!=0, where id is the returned error_id.


new_error discards error objects which are not used in any active error handling
calling scope.


When loaded into a context, an error object of a type E will overwrite the
previously loaded object of type E, if any.

on_error

#include <boost/leaf/on_error.hpp>

namespace boost { namespace leaf {

 template <class... Item>
 <<unspecified-type>> on_error(Item && ... item) noexcept;

} }

Requires:

Each of the Item… types must be no-throw movable.

Effects:

All item… objects are forwarded and stored, together with the value returned from
std::unhandled_exceptions, into the returned object of unspecified type, which should be
captured by auto and kept alive in the calling scope. When that object is destroyed, if an error
has occurred since on_error was invoked, LEAF will process the stored items to obtain error
objects to be associated with the failure.

On error, LEAF first needs to deduce an error_id value err to associate error objects with. This
is done using the following logic:

• If new_error was invoked (by the calling thread) since the object returned by on_error was
created, err is initialized with the value returned by current_error;

• Otherwise, if std::unhandled_exceptions returns a greater value than it returned during
initialization, err is initialized with the value returned by new_error;

• Otherwise, the stored item… objects are discarded and no further action is taken (no error
has occurred).

Next, LEAF proceeds similarly to:

err.load(std::forward<Item>(item)...);

The difference is that unlike load, on_error will not overwrite any error objects already

81

associated with err.

 See Using on_error from the Tutorial.

try_catch

#include <boost/leaf/handle_errors.hpp>

namespace boost { namespace leaf {

 template <class TryBlock, class... H>
 typename std::decay<decltype(std::declval<TryBlock>()())>::type
 try_catch(TryBlock && try_block, H && ... h);

} }

The try_catch function works similarly to try_handle_some, except that it does not use or
understand the semantics of result<T> types; instead:

• It assumes that the try_block throws to indicate a failure, in which case try_catch will
attempt to find a suitable handler among h…;

• If a suitable handler isn’t found, the original exception is re-thrown using throw;.

 See also Exception Handling from the Tutorial section.

try_handle_all

#include <boost/leaf/handle_errors.hpp>

namespace boost { namespace leaf {

 template <class TryBlock, class... H>
 typename std::decay<decltype(std::declval<TryBlock>()().value())>::type
 try_handle_all(TryBlock && try_block, H && ... h);

} }

The try_handle_all function works similarly to try_handle_some, except:

• In addition, it requires that at least one of h… can be used to handle any error (this requirement
is enforced at compile time);

• If the try_block returns some result<T> type, it must be possible to initialize a value of type
T with the value returned by each of h…, and

• Because it is required to handle all errors, try_handle_all unwraps the result<T> object r

82

returned by the try_block, returning r.value() instead of r.

 See also Error Handling from the Tutorial section.

try_handle_some

#include <boost/leaf/handle_errors.hpp>

namespace boost { namespace leaf {

 template <class TryBlock, class... H>
 typename std::decay<decltype(std::declval<TryBlock>()())>::type
 try_handle_some(TryBlock && try_block, H && ... h);

} }

Requires:

• The try_block function may not take any arguments.

• The type R returned by the try_block function must be a result<T> type (see
is_result_type). It is valid for the try_block to return leaf::result<T>, however this is
not a requirement.

• Each of the h… functions:

◦ must return a type that can be used to initialize an object of the type R; in case R is a
result<void> (that is, in case of success it does not communicate a value), handlers that
return void are permitted. If such a handler is selected, the try_handle_some return
value is initialized by {};

◦ may take any error objects, by value, by (const) reference, or as pointer (to const);

◦ may take arguments, by value, of any predicate type: catch_, match, match_value,
match_member, if_not, or of any user-defined predicate type Pred for which
is_predicate<Pred>::value is true;

◦ may take an error_info argument by const &;

◦ may take a diagnostic_info argument by const &;

◦ may take a verbose_diagnostic_info argument by const &.

Effects:

• Creates a local context<E…> object ctx, where the E… types are automatically deduced from
the types of arguments taken by each of h…, which guarantees that ctx is able to store all of
the types required to handle errors.

• Invokes the try_block:

◦ if the returned object r indicates success and the try_block did not throw, r is
forwarded to the caller.

◦ otherwise, LEAF considers each of the h… handlers, in order, until it finds one that it can

83

supply with arguments using the error objects currently stored in ctx, associated with
r.error(). The first such handler is invoked and its return value is used to initialize the
return value of try_handle_some, which can indicate success if the handler was able to
handle the error, or failure if it was not.

◦ if try_handle_some is unable to find a suitable handler, it returns r.


try_handle_some is exception-neutral: it does not throw exceptions, however the
try_block and any of h… are permitted to throw.

Handler Selection Procedure:

A handler h is suitable to handle the failure reported by r iff try_handle_some is able to
produce values to pass as its arguments, using the error objects currently available in ctx,
associated with the error ID obtained by calling r.error(). As soon as it is determined that an
argument value can not be produced, the current handler is dropped and the selection process
continues with the next handler, if any.

The return value of r.error() must be implicitly convertible to error_id. Naturally, the
leaf::result template satisfies this requirement. If an external result type is used instead,
usually r.error() would return a std::error_code, which is able to communicate LEAF
error IDs; see Interoperability.

If err is the error_id obtained from r.error(), each argument ai taken by the handler
currently under consideration is produced as follows:

• If ai is of type Ai, Ai const& or Ai&:

◦ If an error object of type Ai, associated with err, is currently available in ctx, ai is
initialized with a reference to that object; otherwise

◦ If Ai derives from std::exception, and the try_block throws an object ex of type that
derives from std::exception, LEAF obtains Ai* p = dynamic_cast<Ai*>(&ex). The
handler is dropped if p is null, otherwise ai is initialized with *p.

◦ Otherwise the handler is dropped.

84

Example:

....
auto r = leaf::try_handle_some(

 []() -> leaf::result<int>
 {
 return f();
 },

 [](leaf::e_file_name const & fn) ①
 {
 std::cerr << "File Name: \"" << fn.value << '"' << std::endl; ②

 return 1;
 });

result | e_file_name

① In case the try_block indicates a failure, this handler will be selected if ctx stores an
e_file_name associated with the error. Because this is the only supplied handler, if an
e_file_name is not available, try_handle_some will return the leaf::result<int>
returned by f.

② Print the file name, handle the error.

• If ai is of type Ai const* or Ai*, try_handle_some is always able to produce it: first it
attempts to produce it as if it is taken by reference; if that fails, rather than dropping the
handler, ai is initialized with 0.

Example:

....
try_handle_some(

 []() -> leaf::result<int>
 {
 return f();
 },

 [](leaf::e_file_name const * fn) ①
 {
 if(fn) ②
 std::cerr << "File Name: \"" << fn->value << '"' << std::endl;

 return 1;
 });
}

result | e_file_name

85

① This handler can be selected to handle any error, because it takes e_file_name as a
const * (and nothing else).

② If an e_file_name is available with the current error, print it.

• If ai is of a predicate type Pred (for which is_predicate<Pred>::value is true), E is
deduced as typename Pred::error_type, and then:

◦ If E is not void, and an error object e of type E, associated with err, is not currently
stored in ctx, the handler is dropped; otherwise the handler is dropped if the expression
Pred::evaluate(e) returns false.

◦ if E is void, and a std::exception was not caught, the handler is dropped; otherwise
the handler is dropped if the expression Pred::evaluate(e), where e is of type
std::exception const &, returns false.

◦ To invoke the handler, the Pred argument ai is initialized with Pred{e}.

 See also: Predicates.

• If ai is of type error_info const &, try_handle_some is always able to produce it.

Example:

....
try_handle_some(

 []
 {
 return f(); // returns leaf::result<T>
 },

 [](leaf::error_info const & info) ①
 {
 std::cerr << "leaf::error_info:" << std::endl << info; ②
 return info.error(); ③
 });

result | error_info

① This handler matches any error.

② Print error information.

③ Return the original error, which will be returned out of try_handle_some.

• If ai is of type diagnostic_info const &, try_handle_some is always able to produce it.

86

Example:

....
try_handle_some(

 []
 {
 return f(); // throws
 },

 [](leaf::diagnostic_info const & info) ①
 {
 std::cerr << "leaf::diagnostic_information:" << std::endl << info; ②
 return info.error(); ③
 });

result | diagnostic_info

① This handler matches any error.

② Print diagnostic information, including limited information about dropped error objects.

③ Return the original error, which will be returned out of try_handle_some.

• If ai is of type verbose_diagnostic_info const &, try_handle_some is always able to
produce it.

Example:

....
try_handle_some(

 []
 {
 return f(); // throws
 },

 [](leaf::verbose_diagnostic_info const & info) ①
 {
 std::cerr << "leaf::verbose_diagnostic_information:" << std::endl << info;
②
 return info.error(); ③
 });

result | verbose_diagnostic_info

① This handler matches any error.

② Print verbose diagnostic information, including values of dropped error objects.

③ Return the original error, which will be returned out of try_handle_some.

87

Reference: Types

 The contents of each Reference section are organized alphabetically.

context

#include <boost/leaf/context.hpp>

namespace boost { namespace leaf {

 template <class... E>
 class context
 {
 context(context const &) = delete;
 context & operator=(context const &) = delete;

 public:

 context() noexcept;
 context(context && x) noexcept;
 ~context() noexcept;

 void activate() noexcept;
 void deactivate() noexcept;
 bool is_active() const noexcept;

 void propagate() noexcept;

 void print(std::ostream & os) const;

 template <class R, class... H>
 R handle_error(error_id, H && ...) const;

 };

 template <class... H>
 using context_type_from_handlers = typename <<unspecified>>::type;

} }

Constructors | activate | deactivate | is_active | propagate | print | handle_error |
context_type_from_handlers

The context class template provides storage for each of the specified E… types. Typically, context
objects are not used directly; they’re created internally when the try_handle_some,
try_handle_all or try_catch functions are invoked, instantiated with types that are
automatically deduced from the types of the arguments of the passed handlers.

88

Independently, users can create context objects if they need to capture error objects and then
transport them, by moving the context object itself.

Even in that case it is recommended that users do not instantiate the context template by
explicitly listing the E… types they want it to be able to store. Instead, use
context_type_from_handlers or call the make_context function template, which deduce the
correct E… types from a captured list of handler function objects.

To be able to load up error objects in a context object, it must be activated. Activating a context
object ctx binds it to the calling thread, setting thread-local pointers of the stored E… types to point
to the corresponding storage within ctx. It is possible, even likely, to have more than one active
context in any given thread. In this case, activation/deactivation must happen in a LIFO manner.
For this reason, it is best to use a context_activator, which relies on RAII to activate and
deactivate a context.

When a context is deactivated, it detaches from the calling thread, restoring the thread-local
pointers to their pre-activate values. Typically, at this point the stored error objects, if any, are
either discarded (by default) or moved to corresponding storage in other context objects active in
the calling thread (if available), by calling propagate.

While error handling typically uses try_handle_some, try_handle_all or try_catch, it is also
possible to handle errors by calling the member function handle_error. It takes an error_id, and
attempts to select an error handler based on the error objects stored in *this, associated with the
passed error_id.

 context objects can be moved, as long as they aren’t active.

 Moving an active context results in undefined behavior.

Constructors

#include <boost/leaf/context.hpp>

namespace boost { namespace leaf {

 template <class... E>
 context<E...>::context() noexcept;

 template <class... E>
 context<E...>::context(context && x) noexcept;

} }

The default constructor initializes an empty context object: it provides storage for, but does not
contain any error objects.

The move constructor moves the stored error objects from one context to the other.

89

 Moving an active context object results in undefined behavior.

activate

#include <boost/leaf/context.hpp>

namespace boost { namespace leaf {

 template <class... E>
 void context<E...>::activate() noexcept;

} }

Requires:

!is_active().

Effects:

Associates *this with the calling thread.

Ensures:

is_active().

When a context is associated with a thread, thread-local pointers are set to point each E… type in its
store, while the previous value of each such pointer is preserved in the context object, so that the
effect of activate can be undone by calling deactivate.

When an error object is loaded, it is moved in the last activated (in the calling thread) context
object that provides storage for its type (note that this may or may not be the last activated context
object). If no such storage is available, the error object is discarded.

deactivate

#include <boost/leaf/context.hpp>

namespace boost { namespace leaf {

 template <class... E>
 void context<E...>::deactivate() noexcept;

} }

Requires:

• is_active();

• *this must be the last activated context object in the calling thread.

90

Effects:

Un-associates *this with the calling thread.

Ensures:

!is_active().

When a context is deactivated, the thread-local pointers that currently point to each individual
error object storage in it are restored to their original value prior to calling activate.

handle_error

#include <boost/leaf/handle_errors.hpp>

namespace boost { namespace leaf {

 template <class... E>
 template <class R, class... H>
 R context<E...>::handle_error(error_id err, H && ... h) const;

} }

This function works similarly to try_handle_all, but rather than calling a try_block and
obtaining the error_id from a returned result type, it matches error objects (stored in *this,
associated with err) with a suitable error handler from the h… pack.


The caller is required to specify the return type R. This is because in general the
supplied handlers may return different types (which must all be convertible to R).

is_active

#include <boost/leaf/context.hpp>

namespace boost { namespace leaf {

 template <class... E>
 bool context<E...>::is_active() const noexcept;

} }

Returns:

true if the *this is active in any thread, false otherwise.

91

print

#include <boost/leaf/context.hpp>

namespace boost { namespace leaf {

 template <class... E>
 void context<E...>::print(std::ostream & os) const;

} }

Effects:

Prints all error objects currently stored in *this, together with the unique error ID each
individual error object is associated with.

propagate

#include <boost/leaf/context.hpp>

namespace boost { namespace leaf {

 template <class... E>
 void context<E...>::propagate() noexcept;

} }

Requires:

!is_active().

Effects:

Each stored error object of some type E is moved into another context object active in the call
stack that provides storage for objects of type E, if any, or discarded.

context_activator

92

#include <boost/leaf/error.hpp>

namespace boost { namespace leaf {

 template <class Ctx>
 class context_activator
 {
 context_activator(context_activator const &) = delete;
 context_activator & operator=(context_activator const &) = delete;

 public:

 explicit context_activator(Ctx & ctx) noexcept;
 context_activator(context_activator &&) noexcept;
 ~context_activator() noexcept;
 };

} }

context_activator is a simple class that activates and deactivates a context using RAII:

If ctx.is_active() is true at the time the context_activator is initialized, the constructor and
the destructor have no effects. Otherwise:

• The constructor stores a reference to ctx in *this and calls ctx.activate().

• The destructor:

◦ Has no effects if ctx.is_active() is false (that is, it is valid to call deactivate manually,
before the context_activator object expires);

◦ Otherwise, calls ctx.deactivate() and, if there are new uncaught exceptions since the
constructor was called, the destructor calls ctx.propagate().

For automatic deduction of Ctx, use activate_context.

diagnostic_info

#include <boost/leaf/handle_errors.hpp>

namespace boost { namespace leaf {

 class diagnostic_info: public error_info
 {
 //Constructors unspecified

 friend std::ostream & operator<<(std::ostream & os, diagnostic_info const & x);
 };

} }

93

Handlers passed to try_handle_some, try_handle_all or try_catch may take an argument of
type diagnostic_info const & if they need to print diagnostic information about the error.

The message printed by operator<< includes the message printed by error_info, followed by
basic information about error objects that were communicated to LEAF (to be associated with the
error) for which there was no storage available in any active context (these error objects were
discarded by LEAF, because no handler needed them).

The additional information is limited to the type name of the first such error object, as well as their
total count.



The behavior of diagnostic_info (and verbose_diagnostic_info) is affected
by the value of the macro BOOST_LEAF_DIAGNOSTICS:

• If it is 1 (the default), LEAF produces diagnostic_info but only if an active
error handling context on the call stack takes an argument of type
diagnostic_info;

• If it is 0, the diagnostic_info functionality is stubbed out even for error
handling contexts that take an argument of type diagnostic_info. This could
shave a few cycles off the error path in some programs (but it is probably not
worth it).

error_id

94

#include <boost/leaf/error.hpp>

namespace boost { namespace leaf {

 class error_id
 {
 public:

 error_id() noexcept;

 template <class Enum>
 result(Enum e, typename std::enable_if<std::is_error_code_enum<Enum>::value,
Enum>::type * = 0) noexcept;

 error_id(std::error_code const & ec) noexcept;

 int value() const noexcept;
 explicit operator bool() const noexcept;

 std::error_code to_error_code() const noexcept;

 friend bool operator==(error_id a, error_id b) noexcept;
 friend bool operator!=(error_id a, error_id b) noexcept;
 friend bool operator<(error_id a, error_id b) noexcept;

 template <class... Item>
 error_id load(Item && ... item) const noexcept;

 friend std::ostream & operator<<(std::ostream & os, error_id x);
 };

 bool is_error_id(std::error_code const & ec) noexcept;

 template <class... E>
 error_id new_error(E && ... e) noexcept;

 error_id current_error() noexcept;

} }

Constructors | value | operator bool | to_error_code | operator==, !=, < | load |
is_error_id | new_error | current_error

Values of type error_id identify a specific occurrence of a failure across the entire program. They
can be copied, moved, assigned to, and compared to other error_id objects. They’re as efficient as
an int.

95

Constructors

#include <boost/leaf/error.hpp>

namespace boost { namespace leaf {

 error_id::error_id() noexcept = default;

 template <class Enum>
 error_id::error_id(Enum e, typename std::enable_if<std::is_error_code_enum<Enum
>::value, Enum>::type * = 0) noexcept;

 error_id::error_id(std::error_code const & ec) noexcept;

} }

A default-initialized error_id object does not represent a specific failure. It compares equal to any
other default-initialized error_id object. All other error_id objects identify a specific occurrence
of a failure.


When using an object of type error_id to initialize a result<T> object, it will be
initialized in error state, even when passing a default-initialized error_id value.

Converting an error_id object to std::error_code uses an unspecified std::error_category
which LEAF recognizes. This allows an error_id to be transported through interfaces that work
with std::error_code. The std::error_code constructor allows the original error_id to be
restored.


To check if a given std::error_code is actually carrying an error_id, use
is_error_id.

Typically, users create new error_id objects by invoking new_error. The constructor that takes
std::error_code, and the one that takes a type Enum for which
std::is_error_code_enum<Enum>::value is true, have the following effects:

• If ec.value() is 0, the effect is the same as using the default constructor.

• Otherwise, if is_error_id(ec) is true, the original error_id value is used to initialize *this;

• Otherwise, *this is initialized by the value returned by new_error, while ec is passed to load,
which enables handlers used with try_handle_some, try_handle_all or try_catch to
receive it as an argument of type std::error_code.

is_error_id

96

#include <boost/leaf/error.hpp>

namespace boost { namespace leaf {

 bool is_error_id(std::error_code const & ec) noexcept;

} }

Returns:

true if ec uses the LEAF-specific std::error_category that identifies it as carrying an error
ID rather than another error code; otherwise returns false.

load

#include <boost/leaf/error.hpp>

namespace boost { namespace leaf {

 template <class... Item>
 error_id error_id::load(Item && ... item) const noexcept;

} }

Requires:

Each of the Item… types must be no-throw movable.

Effects:

• If value()==0, all of item… are discarded and no further action is taken.

• Otherwise, what happens with each item depends on its type:

◦ If it is a function that takes a single argument of some type E &, that function is called
with the object of type E currently associated with *this. If no such object exists, a
default-initialized object is associated with *this and then passed to the function.

◦ If it is a function that takes no arguments, than function is called to obtain an error
object, which is associated with *this.

◦ Otherwise, the item itself is assumed to be an error object, which is associated with
*this.

Returns:

*this.


load discards error objects which are not used in any active error handling calling
scope.

97


When loaded into a context, an error object of a type E will overwrite the
previously loaded object of type E, if any.

See also:

Loading of Error Objects.

operator==, !=, <

#include <boost/leaf/error.hpp>

namespace boost { namespace leaf {

 friend bool operator==(error_id a, error_id b) noexcept;
 friend bool operator!=(error_id a, error_id b) noexcept;
 friend bool operator<(error_id a, error_id b) noexcept;

} }

These functions have the usual semantics, comparing a.value() and b.value().


The exact strict weak ordering implemented by operator< is not specified. In
particular, if for two error_id objects a and b, a < b is true, it does not follow
that the failure identified by a ocurred earlier than the one identified by b.

operator bool

#include <boost/leaf/error.hpp>

namespace boost { namespace leaf {

 explicit error_id::operator bool() const noexcept;

} }

Effects:

As if return value()!=0.

to_error_code

98

#include <boost/leaf/error.hpp>

namespace boost { namespace leaf {

 std::error_code error_id::to_error_code() const noexcept;

} }

Effects:

Returns a std::error_code with the same value() as *this, using an unspecified
std::error_category.


The returned object can be used to initialize an error_id, in which case the
original error_id value will be restored.

 Use is_error_id to check if a given std::error_code carries an error_id.

value

#include <boost/leaf/error.hpp>

namespace boost { namespace leaf {

 int error_id::value() const noexcept;

} }

Effects:

• If *this was initialized using the default constructor, returns 0.

• Otherwise returns an int that is guaranteed to not be 0: a program-wide unique identifier of
the failure.

error_monitor

99

#include <boost/leaf/on_error.hpp>

namespace boost { namespace leaf {

 class error_monitor
 {
 public:

 error_monitor() noexcept;

 error_id check() const noexcept;

 error_id assigned_error_id(E && ... e) const noexcept;
 };

} }

This class helps obtain an error_id to associate error objects with, when augmenting failures
communicated using LEAF through uncooperative APIs that do not use LEAF to report errors (and
therefore do not return an error_id on error).

The common usage of this class is as follows:

error_code compute_value(int * out_value) noexcept; ①

leaf::error<int> augmenter() noexcept
{
 leaf::error_monitor cur_err; ②

 int val;
 auto ec = compute_value(&val);

 if(failure(ec))
 return cur_err.assigned_error_id().load(e1, e2, ...); ③
 else
 return val; ④
}

① Uncooperative third-party API that does not use LEAF, but may result in calling a user callback
that does use LEAF. In case our callback reports a failure, we’ll augment it with error objects
available in the calling scope, even though compute_value can not communicate an error_id.

② Initialize an error_monitor object.

③ The call to compute_value has failed:

• If new_error was invoked (by the calling thread) after the augment object was initialized,
assigned_error_id returns the last error_id returned by new_error. This would be the
case if the failure originates in our callback (invoked internally by compute_value).

• Else, assigned_error_id invokes new_error and returns that error_id.

100

④ The call was successful, return the computed value.

The check function works similarly, but instead of invoking new_error it returns a default-
initialized error_id.

 See Using error_monitor to Report Arbitrary Errors from C-callbacks.

e_api_function

#include <boost/leaf/common.hpp>

namespace boost { namespace leaf {

 struct e_api_function {char const * value;};

} }

The e_api_function type is designed to capture the name of the API function that failed. For
example, if you’re reporting an error from fread, you could use leaf::e_api_function
{"fread"}.


The passed value is stored as a C string (char const *), so value should only be
initialized with a string literal.

e_at_line

#include <boost/leaf/common.hpp>

namespace boost { namespace leaf {

 struct e_at_line { int value; };

} }

e_at_line can be used to communicate the line number when reporting errors (for example parse
errors) about a text file.

e_errno

101

#include <boost/leaf/common.hpp>

namespace boost { namespace leaf {

 struct e_errno
 {
 int value;
 friend std::ostream & operator<<(std::ostream & os, e_errno const & err);
 };

} }

To capture errno, use e_errno. When printed in automatically-generated diagnostic messages,
e_errno objects use strerror to convert the errno code to string.

e_file_name

#include <boost/leaf/common.hpp>

namespace boost { namespace leaf {

 struct e_file_name { std::string value; };

} }

When a file operation fails, you could use e_file_name to store the name of the file.



It is probably better to define your own file name wrappers to avoid clashes if
different modules all use leaf::e_file_name. It is best to use a descriptive name
that clarifies what kind of file name it is (e.g. e_source_file_name,
e_destination_file_name), or at least define e_file_name in a given module’s
namespace.

e_LastError

102

#include <boost/leaf/common.hpp>

namespace boost { namespace leaf {

 namespace windows
 {
 struct e_LastError
 {
 unsigned value;
 friend std::ostream & operator<<(std::ostream & os, e_LastError const & err);
 };
 }

} }

e_LastError is designed to communicate GetLastError() values on Windows.

e_source_location

#include <boost/leaf/error.hpp>

namespace boost { namespace leaf {

 struct e_source_location
 {
 char const * file;
 int line;
 char const * function;

 friend std::ostream & operator<<(std::ostream & os, e_source_location const & x
);
 };

} }

The BOOST_LEAF_NEW_ERROR, BOOST_LEAF_EXCEPTION and BOOST_LEAF_THROW_EXCEPTION

macros capture __FILE__, __LINE__ and __FUNCTION__ into a e_source_location object.

e_type_info_name

103

#include <boost/leaf/common.hpp>

namespace boost { namespace leaf {

 struct e_type_info_name { char const * value; };

} }

e_type_info_name is designed to store the return value of std::type_info::name.

error_info

#include <boost/leaf/handle_errors.hpp>

namespace boost { namespace leaf {

 class error_info
 {
 //Constructors unspecified

 public:

 error_id error() const noexcept;

 bool exception_caught() const noexcept;
 std::exception const * exception() const noexcept;

 friend std::ostream & operator<<(std::ostream & os, error_info const & x);
 };

} }

Handlers passed to error handling functions such as try_handle_some, try_handle_all or
try_catch may take an argument of type error_info const & to receive generic information
about the error being handled.

The error member function returns the program-wide unique error_id of the error.

The exception_caught member function returns true if the handler that received *this is being
invoked to handle an exception, false otherwise.

If handling an exception, the exception member function returns a pointer to the
std::exception subobject of the caught exception, or 0 if that exception could not be converted to
std::exception.


It is illegal to call the exception member function unless exception_caught() is
true.

104

The operator<< overload prints diagnostic information about each error object currently stored in
the context local to the try_handle_some, try_handle_all or try_catch scope that invoked
the handler, but only if it is associated with the error_id returned by error().

polymorphic_context

#include <boost/leaf/error.hpp>

namespace boost { namespace leaf {

 class polymorphic_context
 {
 protected:

 polymorphic_context() noexcept;
 ~polymorphic_context() noexcept;

 public:

 virtual void activate() noexcept = 0;
 virtual void deactivate() noexcept = 0;
 virtual bool is_active() const noexcept = 0;

 virtual void propagate() noexcept = 0;

 virtual void print(std::ostream &) const = 0;
 };

} }

The polymorphic_context class is an abstract base type which can be used to erase the type of the
exact instantiation of the context class template used. See make_shared_context.

result

#include <boost/leaf/result.hpp>

namespace boost { namespace leaf {

 template <class T>
 class result
 {
 public:

 result() noexcept;
 result(T && v) noexcept;
 result(T const & v);

105

 template <class U>
 result(U &&, <<enabled_if_T_can_be_inited_with_U>>);

 result(error_id err) noexcept;
 result(std::shared_ptr<polymorphic_context> && ctx) noexcept;

 template <class Enum>
 result(Enum e, typename std::enable_if<std::is_error_code_enum<Enum>::value,
Enum>::type * = 0) noexcept;

 result(std::error_code const & ec) noexcept;

 result(result && r) noexcept;

 template <class U>
 result(result<U> && r) noexcept;

 result & operator=(result && r) noexcept;

 template <class U>
 result & operator=(result<U> && r) noexcept;

 bool has_value() const noexcept;
 bool has_error() const noexcept;
 explicit operator bool() const noexcept;

 T const & value() const;
 T & value();

 T const * operator->() const noexcept;
 T * operator->() noexcept;

 T const & operator*() const noexcept;
 T & operator*() noexcept;

 <<unspecified-type>> error() noexcept;

 template <class... Item>
 error_id load(Item && ... item) noexcept;
 };

 template <>
 class result<void>
 {
 public:

 result() noexcept;

 result(error_id err) noexcept;
 result(std::shared_ptr<polymorphic_context> && ctx) noexcept;

106

 template <class Enum>
 result(Enum e, typename std::enable_if<std::is_error_code_enum<Enum>::value,
Enum>::type * = 0) noexcept;

 result(std::error_code const & ec) noexcept;

 result(result && r) noexcept;

 template <class U>
 result(result<U> && r) noexcept;

 result & operator=(result && r) noexcept;

 template <class U>
 result & operator=(result<U> && r) noexcept;

 bool has_value() const noexcept;
 bool has_error() const noexcept;
 explicit operator bool() const noexcept;

 void value() const;

 <<unspecified-type>> error() noexcept;

 template <class... Item>
 error_id load(Item && ... item) noexcept;
 };

 struct bad_result: std::exception { };

} }

Constructors | operator= | has_value | has_error | operator bool | operator -> |
operator * | value` | error | load

The result<T> type can be returned by functions which produce a value of type T but may fail
doing so.

Requires:

T must be movable, and its move constructor may not throw.

Invariant:

A result<T> object is in one of three states:

• Value state, in which case it contains an object of type T, and value/operator*/operator->
can be used to access the contained value.

• Error state, in which case it contains an error ID, and calling value/operator*/operator->
throws leaf::bad_result.

107

• Error capture state, which is the same as the Error state, but in addition to the error ID, it
holds a std::shared_ptr<polymorphic_context>.

result<T> objects are nothrow-moveable but are not copyable.

Constructors

#include <boost/leaf/result.hpp>

namespace boost { namespace leaf {

 template <class T>
 result<T>::result() noexcept;

 template <class T>
 result<T>::result(T && v) noexcept; ①

 template <class T>
 result<T>::result(T const & v); ①

 template <class U>
 result<T>::result(U && u, <<enabled_if_T_can_be_inited_with_U>>); ②

 template <class T>
 result<T>::result(leaf::error_id err) noexcept;

 template <class T>
 template <class Enum>
 result<T>::result(Enum e, typename std::enable_if<std::is_error_code_enum<Enum
>::value, Enum>::type * = 0) noexcept;

 template <class T>
 result<T>::result(std::error_code const & ec) noexcept;

 template <class T>
 result<T>::result(std::shared_ptr<polymorphic_context> && ctx) noexcept;

 template <class T>
 result<T>::result(result &&) noexcept;

 template <class T>
 template <class U>
 result<T>::result(result<U> &&) noexcept;

} }

① Not available if T is void.

② Available if an object of type T can be initialized with std::forward<U>(u). This is to enable

108

e.g. result<std::string> to be initialized with a string literal.

Requires:

T must be movable, and its move constructor may not throw; or void.

Effects:

Establishes the result<T> invariant:

• To get a result<T> in Value state, initialize it with an object of type T or use the default
constructor.

• To get a result<T> in Error state, initialize it with:

◦ an error_id object.


Initializing a result<T> with a default-initialized error_id object (for
which .value() returns 0) will still result in Error state!

◦ a std::error_code object.

◦ an object of type Enum for which std::is_error_code_enum<Enum>::value is true.

• To get a result<T> in Error capture state, initialize it with a
std::shared_ptr<polymorphic_context> (which can be obtained by calling e.g.
make_shared_context).

When a result object is initialized with a std::error_code object, it is used to initialize an
error_id object, then the behavior is the same as if initialized with error_id.

Throws:

• Initializing the result<T> in Value state may throw, depending on which constructor of T is
invoked;

• Other constructors do not throw.


A result that is in value state converts to true in boolean contexts. A result that
is not in value state converts to false in boolean contexts.

 result<T> objects are nothrow-moveable but are not copyable.

error

#include <boost/leaf/result.hpp>

namespace boost { namespace leaf {

 template <class... E>
 <<unspecified-type>> result<T>::error() noexcept;

} }

109

Returns: A proxy object of unspecified type, implicitly convertible to any instance of the result
class template, as well as to error_id.

• If the proxy object is converted to some result<U>:

◦ If *this is in Value state, returns result<U>(error_id()).

◦ Otherwise the state of *this is moved into the returned result<U>.

• If the proxy object is converted to an error_id:

◦ If *this is in Value state, returns a default-initialized error_id object.

◦ If *this is in Error capture state, all captured error objects are loaded in the calling thread,
and the captured error_id value is returned.

◦ If *this is in Error state, returns the stored error_id.

• If the proxy object is not used, the state of *this is not modified.

 The returned proxy object refers to *this; avoid holding on to it.

load

#include <boost/leaf/result.hpp>

namespace boost { namespace leaf {

 template <class T>
 template <class... Item>
 error_id result<T>::load(Item && ... item) noexcept;

} }

This member function is designed for use in return statements in functions that return result<T>
to forward additional error objects to the caller.

Effects:

As if error_id(this->error()).load(std::forward<Item>(item)…).

Returns:

*this.

operator=

110

#include <boost/leaf/result.hpp>

namespace boost { namespace leaf {

 template <class T>
 result<T> & result<T>::operator=(result &&) noexcept;

 template <class T>
 template <class U>
 result<T> & result<T>::operator=(result<U> &&) noexcept;

} }

Effects:

Destroys *this, then re-initializes it as if using the appropriate result<T> constructor. Basic
exception-safety guarantee.

has_value

#include <boost/leaf/result.hpp>

namespace boost { namespace leaf {

 template <class T>
 bool result<T>::has_value() const noexcept;

} }

Returns:

If *this is in value state, returns true, otherwise returns false.

has_error

#include <boost/leaf/result.hpp>

namespace boost { namespace leaf {

 template <class T>
 bool result<T>::has_error() const noexcept;

} }

Returns:

If *this is in value state, returns false, otherwise returns true.

111

operator bool

#include <boost/leaf/result.hpp>

namespace boost { namespace leaf {

 template <class T>
 result<T>::operator bool() const noexcept;

} }

Returns:

If *this is in value state, returns true, otherwise returns false.

operator ->

#include <boost/leaf/result.hpp>

namespace boost { namespace leaf {

 template <class T>
 T const * result<T>::operator->() const noexcept;

 template <class T>
 T * result<T>::operator->() noexcept;

} }

Returns

If *this is in value state, returns a pointer to the stored value; otherwise returns 0.

operator *

#include <boost/leaf/result.hpp>

namespace boost { namespace leaf {

 template <class T>
 T const & result<T>::operator*() const noexcept;

 template <class T>
 T & result<T>::operator*() noexcept;

} }

112

Requires:

*this must be in value state.

Returns

a reference to the stored value.

value`

#include <boost/leaf/result.hpp>

namespace boost { namespace leaf {

 void result<void>::value() const;

 template <class T>
 T const & result<T>::value() const;

 template <class T>
 T & result<T>::value();

 struct bad_result: std::exception { };

} }

Effects:

If *this is in value state, returns a reference to the stored value, otherwise throws bad_result.

verbose_diagnostic_info

#include <boost/leaf/handle_errors.hpp>

namespace boost { namespace leaf {

 class verbose_diagnostic_info: public error_info
 {
 //Constructors unspecified

 friend std::ostream & operator<<(std::ostream & os, verbose_diagnostic_info const
& x);
 };

} }

Handlers passed to error handling functions such as try_handle_some, try_handle_all or
try_catch may take an argument of type verbose_diagnostic_info const & if they need to
print diagnostic information about the error.

113

The message printed by operator<< includes the message printed by error_info, followed by
information about error objects that were communicated to LEAF (to be associated with the error)
for which there was no storage available in any active context (these error objects were discarded
by LEAF, because no handler needed them).

The additional information includes the types and the values of all such error objects.



The behavior of verbose_diagnostic_info (and diagnostic_info) is affected
by the value of the macro BOOST_LEAF_DIAGNOSTICS:

• If it is 1 (the default), LEAF produces verbose_diagnostic_info but only if
an active error handling context on the call stack takes an argument of type
verbose_diagnostic_info;

• If it is 0, the verbose_diagnostic_info functionality is stubbed out even for
error handling contexts that take an argument of type
verbose_diagnostic_info. This could save some cycles on the error path in
some programs (but is probably not worth it).

 Using verbose_diagnostic_info will likely allocate memory dynamically.

114

Reference: Predicates

 The contents of each Reference section are organized alphabetically.

A predicate is a special type of error handler argument which enables the handler selection
procedure to consider the value of available error objects, not only their type; see Using Predicates
to Handle Errors.

The following predicates are available:

• match

• match_value

• match_member

• catch_

• if_not

In addition, any user-defined type Pred for which is_predicate<Pred>::value is true is treated
as a predicate. In this case, it is required that:

• Pred defines an accessible member type error_type to specify the error object type it
requires;

• Pred defines an accessible static member function evaluate, which returns a boolean type,
and can be invoked with an object of type error_type const &;

• A Pred instance can be initialized with an object of type error_type.

When an error handler takes an argument of a predicate type Pred, the handler selection
procedure drops the handler if an error object e of type Pred::error_type is not available.
Otherwise, the handler is dropped if Pred::evaluate(e) returns false. If the handler is invoked,
the Pred argument is initialized with Pred{e}.


Predicates are evaluated before the error handler is invoked, and so they may not
access dynamic state (of course the error handler itself can access dynamic state,
e.g. by means of lambda expression captures).

115

Example 1:

enum class my_error { e1 = 1, e2, e3 };

struct my_pred
{
 using error_type = my_error; ①

 static bool evaluate(my_error) noexcept; ②

 my_error matched; ③
}

namespace boost { namespace leaf {

 template <>
 struct is_predicate<my_pred>: std::true_type
 {
 };

} }

① This predicate requires an error object of type my_error.

② The handler selection procedure will call this function with an object e of type my_error to
evaluate the predicate…

③ …and if successful, initialize the my_pred error handler argument with my_pred{e}.

Example 2:

struct my_pred
{
 using error_type = leaf::e_errno; ①

 static bool evaluate(leaf::e_errno const &) noexcept; ②

 leaf::e_errno const & matched; ③
}

namespace boost { namespace leaf {

 template <>
 struct is_predicate<my_pred>: std::true_type
 {
 };

} }

① This predicate requires an error object of type e_errno.

② The handler selection procedure will call this function with an object e of type e_errno to

116

evaluate the predicate…

③ …and if successful, initialize the my_pred error handler argument with my_pred{e}.

catch_

#include <boost/leaf/pred.hpp>

namespace boost { namespace leaf {

 template <class... Ex>
 struct catch_
 {
 std::exception const & matched;

 // Other members not specified
 };

 template <class Ex>
 struct catch_<Ex>
 {
 Ex const & matched;

 // Other members not specified
 };

 template <class... Ex>
 struct is_predicate<catch_<Ex...>>: std::true_type
 {
 };

} }

is_predicate

When an error handler takes an argument of type that is an instance of the catch_ template, the
handler selection procedure first checks if a std::exception was caught. If not, the handler is
dropped. Otherwise, the handler is dropped if the caught std::exception can not be
dynamic_cast to any of the specified types Ex….

If the error handler is invoked, the matched member can be used to access the exception object.

 See also: Using Predicates to Handle Errors.


While catch_ requires that the caught exception object is of type that derives
from std::exception, it is not required that the Ex… types derive from
std::exception.

117

Example 1:

struct ex1: std::exception { };
struct ex2: std::exception { };

leaf::try_catch(

 []
 {
 return f(); // throws
 },

 [](leaf::catch_<ex1, ex2> c)
 { ①
 assert(dynamic_cast<ex1 const *>(&c.matched) || dynamic_cast<ex2 const *>(&c
.matched));

 });

① The handler is selected if f throws an exception of type ex1 or ex2.

Example 2:

struct ex1: std::exception { };

leaf::try_handle_some(

 []
 {
 return f(); // returns leaf::result<T>
 },

 [](ex1 & e)
 { ①

 });

① The handler is selected if f throws an exception of type ex1. Notice that if we’re interested in
only one exception type, as long as that type derives from std::exception, the use of catch_ is
not required.

if_not

118

#include <boost/leaf/pred.hpp>

namespace boost { namespace leaf {

 template <class P>
 struct if_not
 {
 <<deduced>> matched;

 // Other members not specified
 };

 template <class P>
 struct is_predicate<if_not<P>>: std::true_type
 {
 };

} }

is_predicate

When an error handler takes an argument of type if_not<P>, where P is another predicate type,
the handler selection procedure first checks if an error object of the type E required by P is
available. If not, the handler is dropped. Otherwise, the handler is dropped if P evaluates to true.

If the error handler is invoked, matched can be used to access the matched object E.

 See also Using Predicates to Handle Errors.

Example:

enum class my_enum { e1, e2, e3 };

leaf::try_handle_some(

 []
 {
 return f(); // returns leaf::result<T>
 },

 [](leaf::if_not<leaf::match<my_enum, my_enum::e1, my_enum::e2>>)
 { ①

 });

try_handle_some | match

① The handler is selected if an object of type my_enum, which does not compare equal to e1 or to
e2, is associated with the detected error.

119

match

#include <boost/leaf/pred.hpp>

namespace boost { namespace leaf {

 template <class E, auto... V>
 class match
 {
 <<deduced>> matched;

 // Other members not specified
 };

 template <class E, auto... V>
 struct is_predicate<match<E, V...>>: std::true_type
 {
 };

} }

is_predicate

When an error handler takes an argument of type match<E, V…>, the handler selection procedure
first checks if an error object e of type E is available. If it is not available, the handler is dropped.
Otherwise, the handler is dropped if the following condition is not met:

p1 || p2 || … pn.

Generally, pi is equivalent to e == Vi, except if Vi is pointer to a function

bool (*Vi)(T x).

In this case it is required that Vi != 0 and that x can be initialized with E const &, and pi is
equivalent to:

Vi(e).

In particular, it is valid to pass pointer to the function leaf::category<Enum> for any Vi, where:

std::is_error_code_enum<Enum>::value ||

std::is_error_condition_enum<Enum>::value.

In this case, pi is equivalent to:

&e.category() == &std::error_code(Enum{}).category().

If the error handler is invoked, matched can be used to access e.

 See also Using Predicates to Handle Errors.

120

Example 1: Handling of a subset of enum values.

enum class my_enum { e1, e2, e3 };

leaf::try_handle_some(

 []
 {
 return f(); // returns leaf::result<T>
 },

 [](leaf::match<my_enum, my_enum::e1, my_enum::e2> m)
 { ①
 static_assert(std::is_same<my_enum, decltype(m.matched)>::value);
 assert(m.matched == my_enum::e1 || m.matched == my_enum::e2);

 });

① The handler is selected if an object of type my_enum, which compares equal to e1 or to e2, is
associated with the detected error.

Example 2: Handling of a subset of std::error_code enum values (requires at least C++17, see Example 4 for
a C++11-compatible workaround).

enum class my_enum { e1=1, e2, e3 };

namespace std
{
 template <> struct is_error_code_enum<my_enum>: std::true_type { };
}

leaf::try_handle_some(

 []
 {
 return f(); // returns leaf::result<T>
 },

 [](leaf::match<std::error_code, my_enum::e1, my_enum::e2> m)
 { ①
 static_assert(std::is_same<std::error_code const &, decltype(m.matched)>::value);
 assert(m.matched == my_enum::e1 || m.matched == my_enum::e2);

 });

① The handler is selected if an object of type std::error_code, which compares equal to e1 or to
e2, is associated with the detected error.

121

Example 3: Handling of a specific std::error_code::category (requires at least C++17).

enum class enum_a { a1=1, a2, a3 };
enum class enum_b { b1=1, b2, b3 };

namespace std
{
 template <> struct is_error_code_enum<enum_a>: std::true_type { };
 template <> struct is_error_code_enum<enum_b>: std::true_type { };
}

leaf::try_handle_some(

 []
 {
 return f(); // returns leaf::result<T>
 },

 [](leaf::match<std::error_code, leaf::category<enum_a>, enum_b::b2> m)
 { ①
 static_assert(std::is_same<std::error_code const &, decltype(m.matched)>::value);
 assert(&m.matched.category() == &std::error_code(enum_{}).category() || m.matched
== enum_b::b2);

 });

① The handler is selected if an object of type std::error_code, which either has the same
std::error_category as that of enum_a or compares equal to enum_b::b2, is associated with
the detected error.

The use of the leaf::category template requires automatic deduction of the type of each Vi,
which in turn requires C++17 or newer. The same applies to the use of std::error_code as E, but
LEAF provides a compatible C++11 workaround for this case, using the template condition. The
following is equivalent to Example 2:

122

Example 4: Handling of a subset of std::error_code enum values using the C++11-compatible API.

enum class my_enum { e1=1, e2, e3 };

namespace std
{
 template <> struct is_error_code_enum<my_enum>: std::true_type { };
}

leaf::try_handle_some(

 []
 {
 return f(); // returns leaf::result<T>
 },

 [](leaf::match<leaf::condition<my_enum>, my_enum::e1, my_enum::e2> m)
 {
 static_assert(std::is_same<std::error_code const &, decltype(m.matched)>::value);
 assert(m.matched == my_enum::e1 || m.matched == my_enum::e2);

 });

Instead of a set of values, the match template can be given pointers to functions that implement a
custom comparison. In the following example, we define a handler which will be selected to handle
any error that communicates an object of the user-defined type severity with value greater than
4:

123

Example 5: Handling of failures with severity::value greater than a specified threshold (requires at least
C++17).

struct severity { int value; }

template <int S>
constexpr bool severity_greater_than(severity const & e) noexcept
{
 return e.value > S;
}

leaf::try_handle_some(

 []
 {
 return f(); // returns leaf::result<T>
 },

 [](leaf::match<severity, severity_greater_than<4>> m)
 {
 static_assert(std::is_same<severity const &, decltype(m.matched)>::value);
 assert(m.matched.value > 4);

 });

match_member

#include <boost/leaf/pred.hpp>

namespace boost { namespace leaf {

 template <auto, auto... V>
 struct match_member;

 template <class E, class T, T E::* P, auto... V>
 struct match_member<P, V...>
 {
 E const & matched;

 // Other members not specified
 };

 template <auto P, auto... V>
 struct is_predicate<match_member<P, V...>>: std::true_type
 {
 };

} }

124

is_predicate

This predicate is similar to match_value, but able to bind any accessible data member of E; e.g.
match_member<&E::value, V…> is equivalent to match_value<E, V…>.

 See also Using Predicates to Handle Errors.

 match_member requires at least C++17, whereas match_value does not.

match_value

#include <boost/leaf/pred.hpp>

namespace boost { namespace leaf {

 template <class E, auto... V>
 struct match_value
 {
 E const & matched;

 // Other members not specified
 };

 template <class E, auto... V>
 struct is_predicate<match_value<E, V...>>: std::true_type
 {
 };

} }

is_predicate

This predicate is similar to match, but where match compares the available error object e of type E
to the specified values V…, match_value works with e.value.

 See also Using Predicates to Handle Errors.

125

Example:

struct e_errno { int value; }

leaf::try_handle_some(

 []
 {
 return f(); // returns leaf::result<T>
 },

 [](leaf::match_value<e_errno, ENOENT> m)
 { ①
 static_assert(std::is_same<e_errno const &, decltype(m.matched)>::value);
 assert(m.matched.value == ENOENT);

 });

① The handler is selected if an object of type e_errno, with .value equal to ENOENT, is associated
with the detected error.

126

Reference: Traits

 The contents of each Reference section are organized alphabetically.

is_predicate

#include <boost/leaf/pred.hpp>>

namespace boost { namespace leaf {

 template <class T>
 struct is_predicate: std::false_type
 {
 };

} }

The is_predicate template is used by the handler selection procedure to detect predicate types.
See Using Predicates to Handle Errors.

is_result_type

#include <boost/leaf/error.hpp>>

namespace boost { namespace leaf {

 template <class R>
 struct is_result_type: std::false_type
 {
 };

} }

The error handling functionality provided by try_handle_some and try_handle_all — including
the ability to load error objects of arbitrary types — is compatible with any external result<T>
type R, as long as for a given object r of type R:

• If bool(r) is true, r indicates success, in which case it is valid to call r.value() to recover the
T value.

• Otherwise r indicates a failure, in which case it is valid to call r.error(). The returned value is
used to initialize an error_id (note: error_id can be initialized by std::error_code).

To use an external result<T> type R, you must specialize the is_result_type template so that
is_result_type<R>::value evaluates to true.

Naturally, the provided leaf::result<T> class template satisfies these requirements. In addition,

127

it allows error objects to be transported across thread boundaries, using a
std::shared_ptr<polymorphic_context>.

128

Reference: Macros

 The contents of each Reference section are organized alphabetically.

BOOST_LEAF_ASSIGN

#include <boost/leaf/error.hpp>

#define BOOST_LEAF_ASSIGN(v, r)\
 auto && <<temp>> = r;\
 if(!<<temp>>)\
 return <<temp>>.error();\
 v = std::forward<decltype(<<temp>>)>(<<temp>>).value()

BOOST_LEAF_ASSIGN is useful when calling a function that returns result<T> (other than
result<void>), if the desired behavior is to forward any errors to the caller verbatim.

In case of success, the result value() of type T is assigned to the specified variable v, which must
have been declared prior to invoking BOOST_LEAF_ASSIGN. However, it is possible to use
BOOST_LEAF_ASSIGN to declare a new variable, by passing in v its type together with its name, e.g.
BOOST_LEAF_ASSIGN(auto && x, f()) calls f, forwards errors to the caller, while capturing
successful values in x.

 See also BOOST_LEAF_AUTO.

BOOST_LEAF_AUTO

#include <boost/leaf/error.hpp>

#define BOOST_LEAF_AUTO(v, r)\
 BOOST_LEAF_ASSIGN(auto v, r)

BOOST_LEAF_ASSIGN

BOOST_LEAF_AUTO is useful when calling a function that returns result<T> (other than
result<void>), if the desired behavior is to forward any errors to the caller verbatim.

129

Example:

leaf::result<int> compute_value();

leaf::result<float> add_values()
{
 BOOST_LEAF_AUTO(v1, compute_value()); ①
 BOOST_LEAF_AUTO(v2, compute_value()); ②
 return v1 + v2;
}

① Call compute_value, bail out on failure, define a local variable v1 on success.

② Call compute_value again, bail out on failure, define a local variable v2 on success.

Of course, we could write add_value without using BOOST_LEAF_AUTO. This is equivalent:

leaf::result<float> add_values()
{
 auto v1 = compute_value();
 if(!v1)
 return v1.error();

 auto v2 = compute_value();
 if(!v2)
 return v2.error();

 return v1.value() + v2.value();
}

 See also BOOST_LEAF_ASSIGN.

BOOST_LEAF_CHECK

#include <boost/leaf/error.hpp>

#define BOOST_LEAF_CHECK(r)\
 auto && <<temp>> = r;\
 if(<<temp>>)\
 ;\
 else\
 return <<temp>>.error()

BOOST_LEAF_CHECK is useful when calling a function that returns result<void>, if the desired
behavior is to forward any errors to the caller verbatim.

130

Example:

leaf::result<void> send_message(char const * msg);

leaf::result<int> compute_value();

leaf::result<int> say_hello_and_compute_value()
{
 BOOST_LEAF_CHECK(send_message("Hello!")); ①
 return compute_value();
}

① Try to send a message, then compute a value, report errors using BOOST_LEAF_CHECK.

Equivalent implementation without BOOST_LEAF_CHECK:

leaf::result<float> add_values()
{
 auto r = send_message("Hello!");
 if(!r)
 return r.error();

 return compute_value();
}

BOOST_LEAF_EXCEPTION

#include <boost/leaf/exception.hpp>

#define BOOST_LEAF_EXCEPTION <<voodoo>>

Effects:

BOOST_LEAF_EXCEPTION(e…) is equivalent to leaf::exception(e…), except the current
source location is automatically passed, in a e_source_location object (in addition to all e…
objects).

BOOST_LEAF_NEW_ERROR

#include <boost/leaf/error.hpp>

#define BOOST_LEAF_NEW_ERROR <<voodoo>>

Effects:

BOOST_LEAF_NEW_ERROR(e…) is equivalent to leaf::new_error(e…), except the current

131

source location is automatically passed, in a e_source_location object (in addition to all e…
objects).

BOOST_LEAF_THROW_EXCEPTION

#include <boost/leaf/exception.hpp>

#define BOOST_LEAF_THROW_EXCEPTION throw BOOST_LEAF_EXCEPTION

Effects:

Throws the exception object returned by BOOST_LEAF_EXCEPTION.

132

Design

Rationale
Definition:

Objects that carry information about error conditions are called error objects. For example,
objects of type std::error_code are error objects.


The following reasoning is independent of the mechanism used to transport error
objects, whether it is exception handling or anything else.

Definition:

Depending on their interaction with error objects, functions can be classified as follows:

• Error initiating: functions that initiate error conditions by creating new error objects.

• Error neutral: functions that forward to the caller error objects communicated by lower-
level functions they call.

• Error handling: functions that dispose of error objects they have received, recovering
normal program operation.

A crucial observation is that error initiating functions are typically low-level functions that lack any
context and can not determine, much less dictate, the correct program behavior in response to the
errors they may initiate. Error conditions which (correctly) lead to termination in some programs
may (correctly) be ignored in others; yet other programs may recover from them and resume
normal operation.

The same reasoning applies to error neutral functions, but in this case there is the additional issue
that the errors they need to communicate, in general, are initiated by functions multiple levels
removed from them in the call chain, functions which usually are — and should be treated
as — implementation details. An error neutral function should not be coupled with error object
types communicated by error initiating functions, for the same reason it should not be coupled with
any other aspect of their interface.

Finally, error handling functions, by definition, have the full context they need to deal with at least
some, if not all, failures. In their scope it is an absolute necessity that the author knows exactly
what information must be communicated by lower level functions in order to recover from each
error condition. Specifically, none of this necessary information can be treated as implementation
details; in this case, the coupling which is to be avoided in error neutral functions is in fact
desirable.

We’re now ready to define our

Design goals:

• Error initiating functions should be able to communicate all information available to them
that is relevant to the failure being reported.

• Error neutral functions should not be coupled with error types communicated by lower-

133

level error initiating functions. They should be able to augment any failure with additional
relevant information available to them.

• Error handling functions should be able to access all the information communicated by
error initiating or error neutral functions that is needed in order to deal with failures.

The design goal that error neutral functions are not coupled with the static type of error objects that
pass through them seems to require dynamic polymorphism and therefore dynamic memory
allocations (the Boost Exception library meets this design goal at the cost of dynamic memory
allocation).

As it turns out, dynamic memory allocation is not necessary due to the following

Fact:

• Error handling functions "know" which of the information error initiating and error neutral
functions are able to communicate is actually needed in order to deal with failures in a
particular program. Ideally, no resources should be used wasted storing or communicating
information which is not currently needed to handle errors, even if it is relevant to the
failure.

For example, if a library function is able to communicate an error code but the program does not
need to know the exact error code, then that information may be ignored at the time the library
function attempts to communicate it. On the other hand, if an error handling function needs that
information, the memory needed to store it can be reserved statically in its scope.

The LEAF functions try_handle_some, try_handle_all and try_catch implement this idea.
Users provide error handling lambda functions, each taking arguments of the types it needs in
order to recover from a particular error condition. LEAF simply provides the space needed to store
these types (in the form of a std::tuple, using automatic storage duration) until they are passed
to a suitable handler.

At the time this space is reserved in the scope of an error handling function, thread_local
pointers of the required error types are set to point to the corresponding objects within it. Later on,
error initiating or error neutral functions wanting to communicate an error object of a given type E
use the corresponding thread_local pointer to detect if there is currently storage available for
this type:

• If the pointer is not null, storage is available and the object is moved into the pointed storage,
exactly once — regardless of how many levels of function calls must unwind before an error
handling function is reached.

• If the pointer is null, storage is not available and the error object is discarded, since no error
handling function makes any use of it in this program — saving resources.

This almost works, except we need to make sure that error handling functions are protected from
accessing stale error objects stored in response to previous failures, which would be a serious logic
error. To this end, each occurrence of an error is assigned a unique error_id. Each of the E…
objects stored in error handling scopes is assigned an error_id as well, permanently associating it
with a particular failure.

Thus, to handle a failure we simply match the available error objects (associated with its unique

134

error_id) with the argument types required by each user-provided error handling function. In
terms of C++ exception handling, it is as if we could write something like:

try
{
 auto r = process_file();

 //Success, use r:

}

catch(file_read_error &, e_file_name const & fn, e_errno const & err)
{
 std::cerr <<
 "Could not read " << fn << ", errno=" << err << std::endl;
}

catch(file_read_error &, e_errno const & err)
{
 std::cerr <<
 "File read error, errno=" << err << std::endl;
}

catch(file_read_error &)
{
 std::cerr << "File read error!" << std::endl;
}

Of course this syntax is not valid, so LEAF uses lambda functions to express the same idea:

135

leaf::try_catch(

 []
 {
 auto r = process_file(); //Throws in case of failure, error objects stored inside
the try_catch scope

 //Success, use r:

 }

 [](file_read_error &, e_file_name const & fn, e_errno const & err)
 {
 std::cerr <<
 "Could not read " << fn << ", errno=" << err << std::endl;
 },

 [](file_read_error &, e_errno const & err)
 {
 std::cerr <<
 "File read error, errno=" << err << std::endl;
 },

 [](file_read_error &)
 {
 std::cerr << "File read error!" << std::endl;
 });

try_catch | e_file_name | e_errno

Similar syntax works without exception handling as well. Below is the same snippet, written using
result<T>:

136

return leaf::try_handle_some(

 []() -> leaf::result<void>
 {
 BOOST_LEAF_AUTO(r, process_file()); //In case of errors, error objects are stored
inside the try_handle_some scope

 //Success, use r:

 return { };
 }

 [](leaf::match<error_enum, file_read_error>, e_file_name const & fn, e_errno const &
err)
 {
 std::cerr <<
 "Could not read " << fn << ", errno=" << err << std::endl;
 },

 [](leaf::match<error_enum, file_read_error>, e_errno const & err)
 {
 std::cerr <<
 "File read error, errno=" << err << std::endl;
 },

 [](leaf::match<error_enum, file_read_error>)
 {
 std::cerr << "File read error!" << std::endl;
 });

result | try_handle_some | match | e_file_name | e_errno

 Please post questions and feedback on the Boost Developers Mailing List.

Critique 1: Error Types Do Not Participate in Function
Signatures
A knee-jerk critique of the LEAF design is that it does not statically enforce that each possible error
condition is recognized and handled by the program. One idea I’ve heard from multiple sources is
to add E… parameter pack to result<T>, essentially turning it into expected<T,E…>, so we could
write something along these lines:

137

expected<T, E1, E2, E3> f() noexcept; ①

expected<T, E1, E3> g() noexcept ②
{
 if(expected<T, E1, E2, E3> r = f())
 {
 return r; //Success, return the T
 }
 else
 {
 return r.handle_error<E2>([] (....) ③
 {

 });
 }
}

① f may only return error objects of type E1, E2, E3.

② g narrows that to only E1 and E3.

③ Because g may only return error objects of type E1 and E3, it uses handle_error to deal with
E2. In case r contains E1 or E3, handle_error simply returns r, narrowing the error type
parameter pack from E1, E2, E3 down to E1, E3. If r contains an E2, handle_error calls the
supplied lambda, which is required to return one of E1, E3 (or a valid T).

The motivation here is to help avoid bugs in functions that handle errors that pop out of g: as long
as the programmer deals with E1 and E3, he can rest assured that no error is left unhandled.

Congratulations, we’ve just discovered exception specifications. The difference is that exception
specifications, before being removed from C++, were enforced dynamically, while this idea is
equivalent to statically-enforced exception specifications, like they are in Java.

Why not use the equivalent of exception specifications, even if they are enforced statically?

The short answer is that nobody knows how to fix exception specifications
in any language, because the dynamic enforcement C++ chose has only
different (not greater or fewer) problems than the static enforcement Java
chose. … When you go down the Java path, people love exception
specifications until they find themselves all too often encouraged, or even
forced, to add throws Exception, which immediately renders the
exception specification entirely meaningless. (Example: Imagine writing a
Java generic that manipulates an arbitrary type T).[1]

— Herb Sutter

Consider again the example above: assuming we don’t want important error-related information to
be lost, values of type E1 and/or E3 must be able to encode any E2 value dynamically. But like Sutter
points out, in generic contexts we don’t know what errors may result in calling a user-supplied

138

function. The only way around that is to specify a single type (e.g. std::error_code) that can
communicate any and all errors, which ultimately defeats the idea of using static type checking to
enforce correct error handling.

That said, in every program there are certain error handling functions (e.g. main) which are
required to handle any error, and it is highly desirable to be able to enforce this requirement at
compile-time. In LEAF, the try_handle_all function implements this idea: if the user fails to
supply at least one handler that will match any error, the result is a compile error. This guarantees
that the scope invoking try_handle_all is prepared to recover from any failure.

Critique 2: LEAF Does Not Facilitate Mapping Between
Different Error Types
Most C++ programs use multiple C and C++ libraries, and each library may provide its own system
of error codes. But because it is difficult to define static interfaces that can communicate arbitrary
error code types, a popular idea is to map each library-specific error code to a common program-
wide enum.

For example, if we have — 

namespace lib_a
{
 enum error
 {
 ok,
 ec1,
 ec2,

 };
}

namespace lib_b
{
 enum error
 {
 ok,
 ec1,
 ec2,

 };
}

 — we could define:

139

namespace program
{
 enum error
 {
 ok,
 lib_a_ec1,
 lib_a_ec2,

 lib_b_ec1,
 lib_b_ec2,

 };
}

An error handling library could provide conversion API that uses the C++ static type system to
automate the mapping between the different error enums. For example, it may define a class
template result<T,E> with value-or-error variant semantics, so that:

• lib_a errors are transported in result<T,lib_a::error>,

• lib_b errors are transported in result<T,lib_b::error>,

• then both are automatically mapped to result<T,program::error> once control reaches the
appropriate scope.

There are several problems with this idea:

• It is prone to errors, both during the initial implementation as well as under maintenance.

• It does not compose well. For example, if both of lib_a and lib_b use lib_c, errors that
originate in lib_c would be obfuscated by the different APIs exposed by each of lib_a and
lib_b.

• It presumes that all errors in the program can be specified by exactly one error code, which is
false.

To elaborate on the last point, consider a program that attempts to read a configuration file from
three different locations: in case all of the attempts fail, it should communicate each of the failures.
In theory result<T,E> handles this case well:

140

struct attempted_location
{
 std::string path;
 error ec;
};

struct config_error
{
 attempted_location current_dir, user_dir, app_dir;
};

result<config,config_error> read_config();

This looks nice, until we realize what the config_error type means for the automatic mapping
API we wanted to define: an enum can not represent a struct. It is a fact that we can not assume
that all error conditions can be fully specified by an enum; an error handling library must be able to
transport arbitrary static types efficiently.

Critique 3: LEAF Does Not Treat Low Level Error Types
as Implementation Details
This critique is a combination of Critique 1 and Critique 2, but it deserves special attention. Let’s
consider this example using LEAF:

leaf::result<std::string> read_line(reader & r);

leaf::result<parsed_line> parse_line(std::string const & line);

leaf::result<parsed_line> read_and_parse_line(reader & r)
{
 BOOST_LEAF_AUTO(line, read_line(r)); ①
 BOOST_LEAF_AUTO(parsed, parse_line(line)); ②
 return parsed;
}

result | BOOST_LEAF_AUTO

① Read a line, forward errors to the caller.

② Parse the line, forward errors to the caller.

The objection is that LEAF will forward verbatim the errors that are detected in read_line or
parse_line to the caller of read_and_parse_line. The premise of this objection is that such low-
level errors are implementation details and should be treated as such. Under this premise,
read_and_parse_line should act as a translator of sorts, in both directions:

• When called, it should translate its own arguments to call read_line and parse_line;

141

• If an error is detected, it should translate the errors from the error types returned by
read_line and parse_line to a higher-level type.

The motivation is to isolate the caller of read_and_parse_line from its implementation details
read_line and parse_line.

There are two possible ways to implement this translation:

1) read_and_parse_line understands the semantics of all possible failures that may be reported
by both read_line and parse_line, implementing a non-trivial mapping which both erases
information that is considered not relevant to its caller, as well as encodes different semantics in the
error it reports. In this case read_and_parse_line assumes full responsibility for describing
precisely what went wrong, using its own type specifically designed for the job.

2) read_and_parse_line returns an error object that essentially indicates which of the two inner
functions failed, and also transports the original error object without understanding its semantics
and without any loss of information, wrapping it in a new error type.

The problem with 1) is that typically the caller of read_and_parse_line is not going to handle the
error, but it does need to forward it to its caller. In our attempt to protect the one error handling
function from "implementation details", we’ve coupled the interface of all intermediate error
neutral functions with the static types of errors they do not understand and do not handle.

Consider the case where read_line communicates errno in its errors. What is
read_and_parse_line supposed to do with e.g. EACCESS? Turn it into
READ_AND_PARSE_LINE_EACCESS? To what end, other than to obfuscate the original (already
complex and platform-specific) semantics of errno?

And what if the call to read is polymorphic, which is also typical? What if it involves a user-
supplied function object? What kinds of errors does it return and why should
read_and_parse_line care?

Therefore, we’re left with 2). There’s almost nothing wrong with this option, since it passes any and
all error-related information from lower level functions without any loss. However, using a
wrapper type to grant (presumably dynamic) access to any lower-level error type it may be
transporting is cumbersome and (like Niall Douglas explains) in general probably requires dynamic
allocations. It is better to use independent error types that communicate the additional information
not available in the original error object, while error handlers rely on LEAF to provide efficient
access to any and all low-level error types, as needed.

[1] https://herbsutter.com/2007/01/24/questions-about-exception-specifications/

142

https://herbsutter.com/2007/01/24/questions-about-exception-specifications/

Alternatives to LEAF
• Boost Exception

• Boost Outcome

• tl::expected

Below we offer a comparison of Boost LEAF to Boost Exception and to Boost Outcome.

Comparison to Boost Exception
While LEAF can be used without exception handling, in the use case when errors are
communicated by throwing exceptions, it can be viewed as a better, more efficient alternative to
Boost Exception. LEAF has the following advantages over Boost Exception:

• LEAF does not allocate memory dynamically;

• LEAF does not waste system resources communicating error objects not used by specific error
handling functions;

• LEAF does not store the error objects in the exception object, and therefore it is able to augment
exceptions thrown by external libraries (Boost Exception can only augment exceptions of types
that derive from boost::exception).

The following tables outline the differences between the two libraries which should be considered
when code that uses Boost Exception is refactored to use LEAF instead.


It is possible to access Boost Exception error information using the LEAF error
handling interface. See Boost Exception Integration.

Table 1. Defining a custom type for transporting values of type T

Boost Exception LEAF

typedef error_info<struct my_info_,T>
my_info;

boost::error_info

struct my_info { T value; };

Table 2. Passing arbitrary info at the point of the throw

Boost Exception LEAF

throw my_exception() <<
 my_info(x) <<
 my_info(y);

operator<<

throw leaf::exception(my_exception(),
 my_info{x},
 my_info{y});

exception

143

https://www.boost.org/doc/libs/release/libs/exception/doc/boost-exception.html
https://ned14.github.io/outcome
https://github.com/TartanLlama/expected
https://www.boost.org/doc/libs/release/libs/exception/doc/error_info.html
https://www.boost.org/doc/libs/release/libs/exception/doc/exception_operator_shl.html

Table 3. Augmenting exceptions in error neutral contexts

Boost Exception LEAF

try
{
 f();
}
catch(boost::exception & e)
{
 e << my_info(x);
 throw;
}

boost::exception | operator<<

auto load = leaf::on_error(my_info{x}
);

f();

on_error

Table 4. Obtaining arbitrary info at the point of the catch

Boost Exception LEAF

try
{
 f();
}
catch(my_exception & e)
{
 if(T * v = get_error_info<my_info>(e)
)
 {
 //my_info is available in e.
 }
}

boost::get_error_info

leaf::try_catch(
 []
 {
 f(); // throws
 }
 [](my_exception &, my_info const & x)
 {
 //my_info is available with
 //the caught exception.
 });

try_catch

Table 5. Transporting of error objects

Boost Exception LEAF

All supplied boost::error_info objects are
allocated dynamically and stored in the
boost::exception subobject of exception
objects.

User-defined error objects are stored statically
in the scope of try_catch, but only if their
types are needed to handle errors; otherwise
they are discarded.

Table 6. Transporting of error objects across thread boundaries

144

https://www.boost.org/doc/libs/release/libs/exception/doc/exception.html
https://www.boost.org/doc/libs/release/libs/exception/doc/exception_operator_shl.html
https://www.boost.org/doc/libs/release/libs/exception/doc/get_error_info.html
https://www.boost.org/doc/libs/release/libs/exception/doc/error_info.html
https://www.boost.org/doc/libs/release/libs/exception/doc/exception.html

Boost Exception LEAF

boost::exception_ptr automatically captures
boost::error_info objects stored in a
boost::exception and can transport them
across thread boundaries.

Transporting error objects across thread
boundaries requires the use of capture.

Table 7. Printing of error objects in automatically-generated diagnostic information messages

Boost Exception LEAF

boost::error_info types may define
conversion to std::string by providing
to_string overloads or by overloading
operator<< for std::ostream.

LEAF does not use to_string. Error types may
define operator<< overloads for
std::ostream.



The fact that Boost Exception stores all supplied boost::error_info

objects — while LEAF discards them if they aren’t needed — affects the
completeness of the message we get when we print leaf::diagnostic_info
objects, compared to the string returned by boost::diagnostic_information.

If the user requires a complete diagnostic message, the solution is to use
leaf::verbose_diagnostic_info. In this case, before unused error objects are
discarded by LEAF, they are converted to string and printed. Note that this
allocates memory dynamically.

Comparison to Boost Outcome

Design Differences

Like LEAF, the Boost Outcome library is designed to work in low latency environments. It provides
two class templates, result<> and outcome<>:

• result<T,EC,NVP> can be used as the return type in noexcept functions which may fail,
where T specifies the type of the return value in case of success, while EC is an "error code"
type. Semantically, result<T,EC> is similar to std::variant<T,EC>. Naturally, EC defaults to
std::error_code.

• outcome<T,EC,EP,NVP> is similar to result<>, but in case of failure, in addition to the "error
code" type EC it can hold a "pointer" object of type EP, which defaults to std::exception_ptr.


NVP is a policy type used to customize the behavior of .value() when the
result<> or the outcome<> object contains an error.

The idea is to use result<> to communicate failures which can be fully specified by an "error
code", and outcome<> to communicate failures that require additional information.

145

https://www.boost.org/doc/libs/release/libs/exception/doc/exception_ptr.html
https://www.boost.org/doc/libs/release/libs/exception/doc/error_info.html
https://www.boost.org/doc/libs/release/libs/exception/doc/diagnostic_information.html
https://ned14.github.io/outcome

Another way to describe this design is that result<> is used when it suffices to return an error
object of some static type EC, while outcome<> can also transport a polymorphic error object, using
the pointer type EP.



In the default configuration of outcome<T> the additional information — or the
additional polymorphic object — is an exception object held by
std::exception_ptr. This targets the use case when an exception thrown by a
lower-level library function needs to be transported through some intermediate
contexts that are not exception-safe, to a higher-level context able to handle it.
LEAF directly supports this use as well, see exception_to_result.

Similar reasoning drives the design of LEAF as well. The difference is that while both libraries
recognize the need to transport "something else" in addition to an "error code", LEAF provides an
efficient solution to this problem, while Outcome shifts this burden to the user.

The leaf::result<> template deletes both EC and EP, which decouples it from the type of the
error objects that are transported in case of a failure. This enables lower-level functions to freely
communicate anything and everything they "know" about the failure: error code, even multiple
error codes, file names, URLs, port numbers, etc. At the same time, the higher-level error handling
functions control which of this information is needed in a specific client program and which is not.
This is ideal, because:

• Authors of lower-level library functions lack context to determine which of the information that
is both relevant to the error and naturally available to them needs to be communicated in order
for a particular client program to recover from that error;

• Authors of higher-level error handling functions can easily and confidently make this
determination, which they communicate naturally to LEAF, by simply writing the different
error handlers. LEAF will transport the needed error objects while discarding the ones handlers
don’t care to use, saving resources.


The LEAF examples include an adaptation of the program from the Boost Outcome
result<> tutorial. You can view it on GitHub.


Programs using LEAF for error handling are not required to use
leaf::result<T>; for example, it is possible to use outcome::result<T> with
LEAF.

The Interoperability Problem

The Boost Outcome documentation discusses the important problem of bringing together multiple
libraries — each using its own error reporting mechanism — and incorporating them in a robust
error handling infrastructure in a client program.

Users are advised that whenever possible they should use a common error handling system
throughout their entire codebase, but because this is not practical, both the result<> and the
outcome<> templates can carry user-defined "payloads".

The following analysis is from the Boost Outcome documentation:

146

https://ned14.github.io/outcome/tutorial/essential/result/
https://ned14.github.io/outcome/tutorial/essential/result/
https://ned14.github.io/outcome/tutorial/essential/result/
https://ned14.github.io/outcome/tutorial/essential/result/
https://github.com/boostorg/leaf/blob/master/example/print_half.cpp?ts=4

If library A uses result<T, libraryA::failure_info>, and library B uses result<T,
libraryB::error_info> and so on, there becomes a problem for the application writer who
is bringing in these third party dependencies and tying them together into an application. As a
general rule, each third party library author will not have built in explicit interoperation
support for unknown other third party libraries. The problem therefore lands with the
application writer.

The application writer has one of three choices:

1. In the application, the form of result used is result<T, std::variant<E1, E2, …>>
where E1, E2 … are the failure types for every third party library in use in the
application. This has the advantage of preserving the original information exactly, but
comes with a certain amount of use inconvenience and maybe excessive coupling between
high level layers and implementation detail.

2. One can translate/map the third party’s failure type into the application’s failure type at the
point of the failure exiting the third party library and entering the application. One might
do this, say, with a C preprocessor macro wrapping every invocation of the third party API
from the application. This approach may lose the original failure detail, or mis-map under
certain circumstances if the mapping between the two systems is not one-one.

3. One can type erase the third party’s failure type into some application failure type, which
can later be reconstituted if necessary. This is the cleanest solution with the least
coupling issues and no problems with mis-mapping, but it almost certainly requires the
use of malloc which the previous two did not.

The analysis above (emphasis added) is clear and precise, but LEAF and Boost Outcome tackle the
interoperability problem differently:

• The Boost Outcome design asserts that the "cleanest" solution based on type-erasure is
suboptimal ("almost certainly requires the use of malloc"), and instead provides a system for
injecting custom converters into the outcome::convert namespace, used to translate between
library-specific and program-wide error types, even though this approach "may lose the original
failure detail".

• The LEAF design asserts that coupling the signatures of error neutral functions with the static
types of the error objects they need to forward to the caller does not scale, and instead
transports error objects directly to error handling scopes where they are stored statically,
effectively implementing the third choice outlined above (without the use of malloc).

Further, consider that Outcome aims to hopefully become the one error handling API all libraries
would use, and in theory everyone would benefit from uniformity and standardization. But the
reality is that this is wishful thinking. In fact, that reality is reflected in the design of
outcome::result<>, in its lack of commitment to using std::error_code for its intended
purpose: to be the standard type for transporting error codes. The fact is that std::error_code
became yet another error code type programmers need to understand and support.

In contrast, the design of LEAF acknowledges that C++ programmers don’t even agree on what a
string is. If your project uses 10 different libraries, this probably means 15 different ways to report

147

errors, sometimes across uncooperative interfaces (e.g. C APIs). LEAF helps you get the job done.

148

Benchmark
This benchmark compares the performance of LEAF, Boost Outcome and tl::expected.

149

https://github.com/boostorg/leaf/blob/master/benchmark/benchmark.md

Running the Unit Tests
The unit tests can be run with Meson Build or with Boost Build. To run the unit tests:

Meson Build
Clone LEAF into any local directory and execute:

cd leaf
meson bld/debug
cd bld/debug
meson test

See meson_options.txt found in the root directory for available build options.

Boost Build
Assuming the current working directory is <boostroot>/libs/leaf:

../../b2 test

150

https://mesonbuild.com

Configuration
The following configuration macros are recognized:

• BOOST_LEAF_DIAGNOSTICS: Defining this macro as 0 stubs out both diagnostic_info and
verbose_diagnostic_info (if the macro is left undefined, LEAF defines it as 1).

• BOOST_LEAF_USE_STD_SYSTEM_ERROR: Defining this macro as 0 disables the
std::error_code / std::error_condition integration. In this case LEAF does not #include
<system_error>, which may be too heavy for embedded platforms (if the macro is left
undefined, LEAF defines it as 1).

• BOOST_LEAF_USE_STD_STRING: Defining this macro as 0 disables all use of std::string (this
requires BOOST_LEAF_DIAGNOSTICS=0 as well). In this case LEAF does not #include
<string> which may be too heavy for embedded platforms (if the macro is left undefined,
LEAF defines it as 1).

• BOOST_LEAF_NO_EXCEPTIONS: Disables all exception handling support. If left undefined, LEAF
defines it automatically based on the compiler configuration (e.g. -fno-exceptions).

• BOOST_LEAF_NO_THREADS: Disables all thread safety in LEAF.

Embedded Platforms
Defining BOOST_LEAF_EMBEDDED is equivalent to the following:

#ifndef BOOST_LEAF_NO_EXCEPTIONS
define BOOST_LEAF_NO_EXCEPTIONS
#endif

#ifndef BOOST_LEAF_DIAGNOSTICS
define BOOST_LEAF_DIAGNOSTICS 0
#endif

#ifndef BOOST_LEAF_USE_STD_SYSTEM_ERROR
define BOOST_LEAF_USE_STD_SYSTEM_ERROR 0
#endif

#ifndef BOOST_LEAF_USE_STD_STRING
define BOOST_LEAF_USE_STD_STRING 0
#endif

LEAF supports FreeRTOS out of the box, please define BOOST_LEAF_TLS_FREERTOS (in which case
LEAF automatically defines BOOST_LEAF_EMBEDDED if it is not defined already).

For other embedded platforms, please define BOOST_LEAF_TLS_ARRAY and make sure your project
defines the following two functions to implement TLS pointer access:

151

namespace boost { namespace leaf {

namespace tls
{
 void * read_void_ptr(int tls_index) noexcept;
 void write_void_ptr(int tls_index, void * p) noexcept;
}

} }

 For efficiency, read_void_ptr and write_void_ptr should be defined inline.

Under BOOST_LEAF_TLS_ARRAY (which includes BOOST_LEAF_TLS_FREERTOS):

• Each error type is assigned a unique index in the TLS pointer array. By default, assigned TLS
indices start from 0; this can be changed by defining BOOST_LEAF_TLS_ARRAY_START_INDEX.

• If BOOST_LEAF_TLS_ARRAY_SIZE is defined, LEAF will use it to BOOST_LEAF_ASSERT that TLS
indices are within bounds (which is of course deactivated under NDEBUG).

• Under BOOST_LEAF_TLS_FREERTOS, BOOST_LEAF_TLS_ARRAY_SIZE defaults to
configNUM_THREAD_LOCAL_STORAGE_POINTERS.

If your program does not use concurrency at all, simply define BOOST_LEAF_NO_THREADS, which
requires no TLS support at all (but is NOT thread-safe).

152

https://www.freertos.org/a00110.html#configNUM_THREAD_LOCAL_STORAGE_POINTERS

Limitations
When using dynamic linking, it is required that error types are declared with default visibility,
e.g.:

struct __attribute__ ((visibility ("default"))) my_error_info
{
 int value;
};

This works as expected except on Windows, where thread-local storage is not shared between the
individual binary modules. For this reason, to transport error objects across DLL boundaries, it is
required that they’re captured in a polymorphic_context, just like when Transporting Error
Objects Between Threads.


When using dynamic linking, it is always best to define module interfaces in terms
of C (and implement them in C++ if appropriate).

153

Acknowledgements
Special thanks to Peter Dimov and Sorin Fetche.

Ivo Belchev, Sean Palmer, Jason King, Vinnie Falco, Glen Fernandes, Augustín Bergé — thanks for
the valuable feedback.

Documentation rendered by Asciidoctor with these customizations.

154

https://asciidoctor.org/
https://github.com/zajo/asciidoctor_skin

	LEAF
	Abstract
	Support
	Portability
	Distribution
	Tutorial
	Reporting Errors
	Checking for Errors
	Error Handling
	Working with Different Error Types
	Working with Multiple Error Objects
	Exception Handling
	Using External result Types
	Error Communication Model
	Loading of Error Objects
	Using on_error
	Using Predicates to Handle Errors
	Binding Error Handlers in a std::tuple
	Transporting Error Objects Between Threads
	Classification of Failures
	Converting Exceptions to result<T>
	Using error_monitor to Report Arbitrary Errors from C-callbacks
	Diagnostic Information
	Working with std::error_code, std::error_condition
	Boost Exception Integration

	Examples
	Synopsis
	Error Reporting
	Error Handling

	Reference: Functions
	activate_context
	capture
	context_type_from_handlers
	current_error
	exception
	exception_to_result
	make_context
	make_shared_context
	new_error
	on_error
	try_catch
	try_handle_all
	try_handle_some

	Reference: Types
	context
	context_activator
	diagnostic_info
	error_id
	error_monitor
	e_api_function
	e_at_line
	e_errno
	e_file_name
	e_LastError
	e_source_location
	e_type_info_name
	error_info
	polymorphic_context
	result
	verbose_diagnostic_info

	Reference: Predicates
	catch_
	if_not
	match
	match_member
	match_value

	Reference: Traits
	is_predicate
	is_result_type

	Reference: Macros
	BOOST_LEAF_ASSIGN
	BOOST_LEAF_AUTO
	BOOST_LEAF_CHECK
	BOOST_LEAF_EXCEPTION
	BOOST_LEAF_NEW_ERROR
	BOOST_LEAF_THROW_EXCEPTION

	Design
	Rationale
	Critique 1: Error Types Do Not Participate in Function Signatures
	Critique 2: LEAF Does Not Facilitate Mapping Between Different Error Types
	Critique 3: LEAF Does Not Treat Low Level Error Types as Implementation Details

	Alternatives to LEAF
	Comparison to Boost Exception
	Comparison to Boost Outcome

	Benchmark
	Running the Unit Tests
	Meson Build
	Boost Build

	Configuration
	Embedded Platforms

	Limitations
	Acknowledgements

