LEAF

Lightweight Error Augmentation Framework written in C++11 | Emil Dotchevski

Abstract

Boost LEAF is a lightweight error handling library for C++11. Features:

Portable single-header format, no dependencies.

 Tiny code size when configured for embedded development.

* No dynamic memory allocations, even with very large payloads.

* Deterministic unbiased efficiency on the "happy" path and the "sad" path.

* Error objects are handled in constant time, independent of call stack depth.

* Can be used with or without exception handling.

Support

* Report issues on GitHub

https://github.com/boostorg/leaf/issues

Distribution

LEATFT is distributed under the Boost Software License, Version 1.0.

There are three distribution channels:
* LEAF is included in official Boost releases (starting with Boost 1.75), and therefore available via
most package managers.
e The source code is hosted on GitHub.

* For maximum portability, the latest LEAF release is also available in single-header format:
leaf.hpp (direct download link).

e LEAF does not depend on Boost or other libraries.

http://www.boost.org/LICENSE_1_0.txt
https://www.boost.org/
https://github.com/boostorg/leaf
https://raw.githubusercontent.com/boostorg/leaf/gh-pages/leaf.hpp

Tutorial

What is a failure? It is simply the inability of a function to return a valid result, instead producing
an error object describing the reason for the failure.

A typical design is to return a variant type, e.g. resul t <T, E>. Internally, such variant types must
store a discriminant (in this case a boolean) to indicate whether the object holds a T or an E.

The design of LEAF is informed by the observation that the immediate caller must have access to
the discriminant in order to determine the availability of a valid T, but otherwise it is rare that it
needs to access any error objects. They are only needed once an error handling scope is reached.

Therefore what would have been a result<T, E> becomes result<T> which stores the
discriminant and (optionally) a T, while error objects are delivered directly to the error handling
scope where they are needed.

The benefit of this decomposition is that r esul t <T> becomes extremely lightweight, as it is not
coupled with error types; further, error objects are communicated in constant time (independent of
the call stack depth). Even very large objects are handled efficiently without dynamic memory
allocation.

Reporting Errors

A function that reports an error:

enum class err1 { el1, e2, e3 };

leaf::result<T> ()
{

if(error_detected)
return leaf::new_error(errl1::e1); // Pass an error object of any type

// Produce and return a T.

}

result | new error

Checking for Errors

Checking for errors communicated by a | eaf : : r esul t <T> works as expected:

leaf::result<U> g()

{
leaf::result<T> r = f();

if(Ir)
return r.error();

T const & v = r.value();
// Use v to produce a valid U

}

result

The the result of r. error () is compatible with any instance of the | eaf : : resul t
@ template. In the example above, note that g returns a | eaf : : resul t <U>, while r
isof typel eaf : : resul t <T>.

The boilerplate i f statement can be avoided using BOOST_LEAF_AUTO

leaf::result<U> g()

{
BOOST_LEAF_AUTO(v, f()); // Bail out on error

// Use v to produce a valid U
}

BOOST_LEAF_AUTO

BOOST_LEAF_AUTO can not be used with voi d results; in that case, to avoid the boilerplate i f
statement, use BOOST LEAF CHECK:

leaf::result<void> f();

leaf::result<int> g()

{
BOOST_LEAF_CHECK(f()); // Bail out on error

return 42;

}

BOOST_LEAF_CHECK

On implementations that define _ GNUC__ (e.g. GCC/clang), the BOOST_LEAF_CHECK macro
definition takes advantage of GNU C statement expressions. In this case, in addition to its portable
usage with resul t <voi d>, BOOST_LEAF_CHECK can be used in expressions with non-voi d result

types:

leaf::result<int> f();
float g(int x);

leaf::result<float> t()
{

https://gcc.gnu.org/onlinedocs/gcc/Statement-Exprs.html

return g(BOOST_LEAF_CHECK(f()));
}

The following is the portable alternative:

leaf::result<float> t()

{
BOOST_LEAF_AUTO(x, f());
return g(x);

}

Error Handling

Error handling scopes must use a special syntax to indicate that they need to access error objects.
The following excerpt attempts several operations and handles errors of type err 1:

leaf::result<U> r = leaf::try_handle_some(

[10) -> leaf::result<U>

{
BOOST_LEAF_AUTO(v1, f1());

BOOST_LEAF_AUTO(v2, 2());

return g(v1, v2);

}I

[1C err1 e) -> leaf::result<U>

{
if(e == errl::el)
.... // Handle err1::el
else
.... // Handle any other err1 value

)

try handl e_sone | result | BOOST LEAF_AUTO

First, try_handl e_sonme executes the first function passed to it; it attempts to produce a
resul t <U>, but it may fail.

The second lambda is an error handler: it will be called iff the first lambda fails with an error
object of type err 1. That object is stored on the stack, local to the try_handl e_sone function
(LEAF knows to allocate this storage because we gave it an error handler that takes an er r 1). Error
handlers passed to leaf::try_handl e_sone can return a valid | eaf::result<U> but are
allowed to fail.

It is possible for an error handler to declare that it can only handle some specific values of a given

error type:

leaf::result<U> r = leaf::try_handle_some(

[1O) -> leaf::result<U>

{
BOOST_LEAF_AUTO(v1, f1());
BOOST_LEAF_AUTO(v2, f2());

return g(v1. v2);

h

[1(leaf::match<err1, errl::el, errl::e3>) -> leaf::result<U>
{ // Handle errl1::el1 or errl::e3

h

[1C errT e) -> leaf::result<U>

{ // Handle any other err1 value

})i

try_bhandl e_sone | result | BOOST_LEAF_AUTO | nat ch

LEAF considers the provided error handlers in order, and calls the first one for which it is able to
supply arguments, based on the error objects currently being communicated. Above:

* The first error handler will be called iff an error object of type er r 1 is available, and its value is
eithererrl::elorerrl::e3.

* Otherwise the second error handler will be called iff an error object of type err 1 is available,
regardless of its value.

e Otherwise |l eaf : : try_handl e_sone is unable to handle the error.

It is possible for an error handler to conditionally leave the failure unhandled:

leaf::result<U> r = leaf::try_handle_some(

[TO) -> leaf::result<U>

{
BOOST_LEAF_AUTO(v1, f1());
BOOST_LEAF_AUTO(v2, f2());

return g(v1. v2);
I

[1C err1 e, leaf::error_info const & ei) -> leaf::result<U>

{

if(<<condition>>)

return valid_U;
else
return ei.error();

)

try _handle_sone |result | BOOST_LEAF_AUTO | error_info

Any error handler can take an argument of type | eaf::error_info const & to get access to
generic information about the error being handled; in this case we use the er r or member function,
which returns the unique error_id of the current error; we use it to initialize the returned
| eaf : : resul t, effectively propagating the current error out of t ry_handl e_sore.

«) If we wanted to signal a new error (rather than propagating the current error), in
- the r et ur n statement we would invoke the | eaf : : new_err or function.

If we want to ensure that all possible failures are handled, we use | eaf : : try_handl e_al | instead
ofl eaf::try_handl e_sone:

U r = leaf::try_handle_all(

[1O) -> leaf::result<U>

{
BOOST_LEAF_AUTO(v1, f1());
BOOST_LEAF_AUTO(v2, f2());

return g(v1. v2);

o
[1(leaf::match<err1, errl::el1>) -> U
{
// Handle err::ef
b
[JCerrte) >U
{
// Handle any other err1 value
b
(10 > U
{
// Handle any other failure
)i

try handl e all

The l eaf: : try_handl e_al | function enforces at compile time that at least one of the supplied
error handlers takes no arguments (and therefore is able to handle any failure). In addition, all
error handlers are forced to return a valid U, rather than a |eaf::result<U> so that
l eaf::try_handl e_al | is guaranteed to succeed, always.

Working with Different Error Types

It is of course possible to provide different handlers for different error types:

enum class err1 { el, e2, e3 };
enum class err2 { el, e2 };

leaf::result<U> r = leaf::try_handle_some(

[TO) -> leaf::result<U>

{
BOOST_LEAF_AUTO(v1, f1());
BOOST_LEAF_AUTO(v2, f2());

return g(v1, v2);

b

[1C err1 e) -> leaf::result<U>

{ // Handle errors of type ‘err1".
¥

[1C err2 e) -> leaf::result<U>

{ // Handle errors of type ‘err2".
})i

try handl e_sone | result | BOOST LEAF_AUTO
Error handlers are always considered in order:

 The first error handler will be used if an error object of type err 1 is available;
» otherwise, the second error handler will be used if an error object of type err 2 is available;

* otherwise, | eaf : : try_handl e_sone fails.

Working with Multiple Error Objects

The | eaf::new error function can be invoked with multiple error objects, for example to
communicate an error code and the relevant file name:

enum class io_error { open_error, read_error, write_error };

struct e_file_name { std::string value; }

leaf::result<File> open_file(char const * name)

{

if(open_failed)
return leaf::new_error(io_error::open_error, e_file_name {name});

result | new error

Similarly, error handlers may take multiple error objects as arguments:

leaf::result<U> r = leaf::try_handle_some(
[1O) -> leaf::result<U>
{
BOOST_LEAF_AUTO(f, open_file(fn));

}I

[1(io_error ec, e_file_name fn) -> leaf::result<U>

{ // Handle I/0 errors when a file name is also available.
}

[1(io_error ec) -> leaf::result<U>

{ // Handle I/0 errors when no file name is available.
F)i

try handl e_sone | result | BOOST LEAF_AUTO

Once again, error handlers are considered in order:

 The first error handler will be used if an error object of type i o_error and and error_object of
type e_fi | e_name are available;

» otherwise, the second error handler will be used if an error object of type i o_error is
avaliable;

* otherwise, | eaf _try_handl e_sone fails.

An alternative way to write the above is to provide a single error handler that takes the
e_file_name argument as a pointer:

leaf::result<U> r = leaf::try_handle_some(

[1O) -> leaf::result<U>

10

{
BOOST_LEAF_AUTO(f, open_file(fn));

}l

[1C io_error ec, e_file_name const * fn) -> leaf::result<U>
{
if(fn)
.... // Handle I/0 errors when a file name is also available.
else
.... // Handle I/0 errors when no file name is available.
)

try handl e_sone | result | BOOST LEAF_AUTO

An error handler is never dropped for lack of error objects of types which the handler takes as
pointers; in this case LEAF simply passes nul | pt r for these arguments.

(r') When an error handler takes arguments by mutable reference or pointer, changes
- to their state are preserved when the error is communicated to the caller.

Augmenting Errors

Let’s say we have a function par se_| i ne which could fail due to ani o_error or a parse_error:

enum class io_error { open_error, read_error, write_error };
enum class parse_error { bad_syntax, bad_range };

leaf::result<int> parse_line(FILE * f);

The | eaf : : on_error function can be used to automatically associate additional error objects with
any failure that is "in flight":

struct e_line { int value; };

leaf::result<void> process_file(FILE * f)

{
for(int current_line = 1; current_line != 10; ++current_line)
{
auto load = leaf::on_error(e _line {current_line});
BOOST_LEAF_AUTO(v, parse_line(f));
// use v
}
}

11

on_error | BOOST LEAF AUTO

Because process_fil e does not handle errors, it remains neutral to failures, except to attach the
current_line if something goes wrong. The object returned by on_error holds a copy of
current _| i ne wrapped in struct e_line. If parse_| i ne succeeds, the e_| i ne object is simply
discarded; if it fails, the e_I i ne object will be automatically "attached" to the failure.

Such failures can then be handled like so:

leaf::result<void> r = leaf::try_handle_some(

[6]1() -> leaf::result<void>

{
BOOST_LEAF_CHECK(process_file(f));
H
[1(parse_error e, e_line current_line)
{
std::cerr << "Parse error at line " << current_line.value << std::endl;
H
[1C io_error e, e _line current_line)
{
std::cerr << "I/0 error at line " << current_line.value << std::endl;
H
[1C io_error e)
{
std::cerr << "I/0 error" << std::endl;
)

try_handl e_sone | BOOST_ LEAF_CHECK

The following is equivalent, and perhaps simpler:

leaf::result<void> r = leaf::try_handle_some(

[TO) -> leaf::result<void>

{
BOOST_LEAF_CHECK(process_file(f));

}l

[1(parse_error e, e_line current_line)

{

std::cerr << "Parse error at line

}I

<< current_line.value << std::endl;

[1C io_error e, e line const * current_line)

{

12

std::cerr << "Parse error";

if(current_line)
std::cerr << " at line

std::cerr << std::endl;

})

<< current_line->value;

Exception Handling

What happens if an operation throws an exception? Both try_handl e_sone and try_handl e_al |
catch exceptions and are able to pass them to any compatible error handler:

leaf::result<void> r = leaf::try_handle_some(

[TO) -> leaf::result<void>

{
BOOST_LEAF_CHECK(process_file(f));
H
[1(std::bad_alloc const &)
{
std::cerr << "Out of memory!" << std::endl;
H
[1(parse_error e, e_line 1)
{
std::cerr << "Parse error at line " << l.value << std::endl;
H
[1C io_error e, e line const * 1)
{
std::cerr << "Parse error";
if(1)

std::cerr << " at line " << 1l.value;
std::cerr << std::endl;

)

try handl e _sone | result | BOOST LEAF CHECK

Above, we have simply added an error handler that takes a st d: : bad_al | oc, and everything "just
works" as expected: LEAF will dispatch error handlers correctly no matter if failures are
communicated via | eaf : : resul t or by an exception.

Of course, if we use exception handling exclusively, we do not need | eaf : : resul t at all. In this
caseweusel eaf::try_catch:

leaf::try_catch(

13

[]

{
process_file(f);
H
[1(std::bad_alloc const &)
{
std::cerr << "Out of memory!" << std::endl;
H
[1(parse_error e, e_line 1)
{
std::cerr << "Parse error at line " << l.value << std::endl;
b
[1(io_error e, e_line const * 1)
{
std::cerr << "Parse error";
if(1)

n n

std::cerr << " at line
std::cerr << std::endl;

)

<< l.value;

try catch

We did not have to change the error handlers! But how does this work? What kind of exceptions
does process_fil e throw?

LEAF enables a novel exception handling technique, which does not require an exception type
hierarchy to classify failures and does not carry data in exception objects. Recall that when failures
are communicated via | eaf : : result, we call | eaf : : new_error in a r et urn statement, passing
any number of error objects which are sent directly to the correct error handling scope:

enum class err1 { el, e2, e3 };
enum class err2 { el, e2 };

leaf::result<T> ()
{

if(error_detected)
return leaf::new_error(errl::el, err2::e2);

// Produce and return a T.

}

result | new error

14

When using exception handling this becomes:

enum class err1 { el1, e2, e3 };
enum class err2 { el, e2 };

T ()
{

if(error_detected)
leaf::throw_exception(erri1::el, err2::e2);

// Produce and return a T.

}

t hr ow _exception

The leaf::throw exception function handles the passed error objects just like
| eaf : : new_error does, and then throws an object of a type that derives from st d: : excepti on.
Using this technique, the exception type is not important: | eaf : : t ry_cat ch catches all exceptions,
then goes through the usual LEAF error handler selection routine.

If instead we want to use the usual convention of throwing different types to indicate different
failures, we simply pass an exception object (that is, an object of a type that derives from
std: : exception) as the first argument to | eaf : : t hr ow_excepti on:

leaf::throw_exception(std::runtime_error("Error!"), errl::el1, err2::e2);

In this case the thrown exception object will be of type that derives from std:: runtime_error,
rather than from st d: : excepti on.

Finally, | eaf: : on_error "just works" as well. Here is our process_fil e function rewritten to
work with exceptions, rather than return al eaf : : resul t (see Augmenting Errors):

int parse_line(FILE * f); // Throws
struct e_line { int value; };

void process_file(FILE * f)

{
for(int current_line = 1; current_line !'= 10; ++current_Lline)
{
auto load = leaf::on_error(e _line {current_line});
int v = parse_line(f);
// use v
}
+

on_error

15

Using External r esul t Types

Static type checking creates difficulties in error handling interoperability in any non-trivial project.
Using exception handling alleviates this problem somewhat because in that case error types are not
burned into function signatures, so errors easily punch through multiple layers of APIs; but this
doesn’t help C++ in general because the community is fractured on the issue of exception handling.
That debate notwithstanding, the reality is that C++ programs need to handle errors communicated
through multiple layers of APIs via a plethora of error codes, r esul t types and exceptions.

LEAF enables application developers to shake error objects out of each individual library’s r esul t
type and send them to error handling scopes verbatim. Here is an example:

1ib1::result<int, 1ib1::error_code> foo();
1ib2::result<int, 1ib2::error_code> bar();

int g(int a, int b);

leaf::result<int> f()

{

auto a = foo();
if('a)
return leaf::new_error(a.error());

auto b = bar();
if('b)

return leaf::new _error(b.error());

return g(a.value(), b.value());

}

result | new error

Later we simply call | eaf : : t ry_handl e_sone, passing an error handler for each type:

leaf::result<int> r = leaf::try_handle_some(

[1O) -> leaf::result<int>

{
return f();
i
[1C 1ib1::error_code ec) -> leaf::result<int>
{
// Handle 1ib1::error_code
I

[1C 1ib2::error_code ec) -> leaf::result<int>

16

{
// Handle 1ib2::error_code

)
}

try handl e_sone | result

A possible complication is that we might not have the option to return | eaf : : resul t <i nt > from f :
a third party API may impose a specific signature on it, forcing it to return a library-specific r esul t
type. This would be the case when f is intended to be used as a callback:

void register_callback(std::function<lib3::result<int>()> const & callback);

Can we use LEAF in this case? Actually we can, as long as | i b3: : resul t is able to communicate a
std:: error_code. We just have to let LEAF know, by specializing the i s_r esul t _t ype template:

namespace boost { namespace leaf {

template <class T>
struct is_result_type<lib3::result<T>>: std::true_type;

}

is result type

With this in place, f works as before, even though |i b3::result isn’t capable of transporting
i bl errorsorlib2 errors:

lib1::result<int, 1ib1::error_type> foo();
1ib2::result<int, 1ib2::error_type> bar();

int g(int a, int b);
lib3::result<int> f() // Note: return type is not leaf::result<int>

{

auto a = foo();
if(la)
return leaf::new_error(a.error());
auto b = bar();
if('b)
return leaf::new_error(b.error());

return g(a.value(), b.value());

new error

17

The object returned by | eaf : : new_error converts implicitly to st d: : error _code, using a LEAF-
specific er ror _cat egory, which makes | i b3: : resul t compatible with | eaf: : try_handl e_sone
(and with I eaf::try_handl e_al I):

1ib3::result<int> r = leaf::try_handle_some(

[TO) -> 1ib3::result<int>

{

return f();
b
[1C 1ib1::error_code ec) -> 1lib3::result<int>
{

// Handle 1ib1::error_code
I
[1C 1ib2::error_code ec) -> 1lib3::result<int>
{

// Handle 1ib2::error_code
)

}
try handl e_sone
Interoperability

Ideally, when an error is detected, a program using LEAF would always call new_err or, ensuring
that each encountered failure is definitely assigned a unique error _i d, which then is reliably
delivered, by an exception or by a r esul t <T> object, to the appropriate error handling scope.

Alas, this is not always possible.

For example, the error may need to be communicated through uncooperative 3rd-party interfaces.
To facilitate this transmission, a error ID may be encoded in a st d: : error _code. As long as a 3rd-
party interface is able to transport a st d: : err or _code, it can be compatible with LEAF.

Further, it is sometimes necessary to communicate errors through an interface that does not even
use std::error_code. An example of this is when an external lower-level library throws an
exception, which is unlikely to be able to carry an error_i d.

To support this tricky use case, LEAF provides the function current _error, which returns the
error ID returned by the most recent call (from this thread) to new_err or. One possible approach
to solving the problem is to use the following logic (implemented by the err or _noni t or type):

1. Before calling the uncooperative API], call current _error and cache the returned value.

2. Call the API, then call current _error again:

a. If this returns the same value as before, pass the error objects to new_error to associate

18

them with a new error _i d;
b. else, associate the error objects with the error_i d value returned by the second call to

current_error.

Note that if the above logic is nested (e.g. one function calling another), new_error will be called
only by the inner-most function, because that call guarantees that all calling functions will hit the
el se branch.

For a detailed tutorial see Using er r or _noni t or _to Report Arbitrary Errors from C-callbacks.

Loading of Error Objects

Recall that error objects communicated to LEAF are stored on the stack, local to the
try handle_sane, try_handle_all or try catch function used to handle errors. To load an
error object means to move it into such storage, if available.

Various LEAF functions take a list of error objects to load. As an example, if a function copy_fil e
that takes the name of the input file and the name of the output file as its arguments detects a
failure, it could communicate an error code ec, plus the two relevant file names using new _error:

return leaf::new_error(ec, e_input_name{n1}, e_output_name{n2});

Alternatively, error objects may be loaded using a r esul t <T> that is already communicating an
error. This way they become associated with that error, rather than with a new error:

leaf::result<int> f() noexcept;

leaf::result<void> g(char const * fn) noexcept

{
if(leaf::result<int> r = f())
{O®
return { };
}
else
{
return r.load(e_file_name{fn}); @
}
}

result |l oad

® Success! User. val ue() .

@f () has failed; here we associate an additional e_fil e_name with the error. However, this
association occurs iff in the call stack leading to g there are error handlers that take an

19

e_fil e_nanme argument. Otherwise, the object passed to | oad is discarded. In other words, the
passed objects are loaded iff the program actually uses them to handle errors.

Besides error objects, | oad can take function arguments:

 If we pass a function that takes no arguments, it is invoked, and the returned error object is
loaded.

Consider that if we pass to | oad an error object that is not used by an error handler, it will be
discarded. If the object is expensive to compute, it would be better if the computation is only
performed in case of an error. Passing a function with no arguments to | oad is an excellent way
to achieve this behavior:

struct info { };
info compute_info() noexcept;

leaf::result<void> operation(char const * file_name) noexcept

{
if(leaf::result<int> r = try_something())

{®
;é;;rn {}
}

else

{
return r.load(@

[&]
{

return compute_info();

})

result |l oad

@ Success! User. val ue().
@ try_sonet hi ng has failed; conput e_i nf o will only be called if an error handler exists in

the call stack which takes a i nf o argument.

» If we pass a function that takes a single argument of some type E & LEAF calls the function
with the object of type E currently loaded in an active cont ext, associated with the error. If no
such object is available, a new one is default-initialized and then passed to the function.

For example, if an operation that involves many different files fails, a program may provide for
collecting all relevant file names in a e_r el evant _fi | e_nanes object:

struct e_relevant_file_names

{

20

std::vector<std::string> value;

b
leaf::result<void> operation(char const * file_name) noexcept
{
if(leaf::result<int> r = try_something())
{®
return { };
}
else
{
return r.load(@
[&](e _relevant_file names & e)
{
e.value.push_back(file_name);
)
}
}

result |l oad

@ Success! User. val ue().

@try_sonething has failed—add file_name to the e_rel evant_file_names object,
associated with the error _i d communicated in r. Note, however, that the passed function
will only be called iff in the call stack there are error handlers that take an
e_rel evant _fil e_nanes object.

Using on_err or

It is not typical for an error reporting function to be able to supply all of the data needed by a
suitable error handling function in order to recover from the failure. For example, a function that
reports Fl LE failures may not have access to the file name, yet an error handling function needs it
in order to print a useful error message.

The file name is typically readily available in the call stack leading to the failed FI LE operation.

Below, while par se_i nf o can’t report the file name, par se_fi | e can and does:

leaf::result<info> parse_info(FILE * f) noexcept; @

leaf::result<info> parse_file(char const * file_name) noexcept

{

auto load = leaf::on_error(leaf::e_file _name{file_name}); @
if(FILE * f = fopen(file_name,"r"))
{

auto r = parse_info(f);

21

fclose(f);
return r;

}

else
return leaf::new_error(error_enum::file_open_error);

result |on_error | new error

@ par se_i nf o communicates errors using | eaf : : resul t .

@ on_error ensures that the file name is included with any error reported out of parse_file.
When the | oad object expires, if an error is being reported, the passed e_fi | e_nane value will
be automatically associated with it.

(s .
O on_error — like new_error —can be passed any number of arguments.
-

When we invoke on_err or, we can pass three kinds of arguments:

1. Actual error objects (like in the example above);
2. Functions that take no arguments and return an error object;

3. Functions that take a single error object by mutable reference.

For example, if we want to use on_error to capture errno, we can’t just pass e_errno to it,
because at that time it hasn’t been set (yet). Instead, we’d pass a function that returns it:

void read_file(FILE * f) {

auto load = leaf::on_error([]{ return leaf::e_errno{errno}; });

size t nril=fread(buf1,1,countl,f);
if(ferror(f))
leaf::throw_exception();

size t nr2=fread(buf2,1,count2,f);

if(ferror(f))
leaf::throw_exception();

size t nr3=fread(buf3,1,count3,f);

if(ferror(f))
leaf::throw_exception();

Above, if an exception is thrown, LEAF will invoke the function passed to on_error and associate
the returned e_er r no object with the exception.

Finally, if on_error is passed a function that takes a single error object by mutable reference, the

22

behavior is similar to how such functions are handled by | oad; see Loading of Error Objects.

Using Predicates to Handle Errors

Usually, the compatibility between error handlers and the available error objects is determined
based on the type of the arguments they take. When an error handler takes a predicate type as an
argument, the handler selection procedure is able to also take into account the value of the
available error objects.

Consider this error code enum:

enum class my_error

{
el=1,
el,
e3

+;

We could handle my_er r or errors like so:

return leaf::try_handle_some(

[]
{
return f(); // Returns leaf::result<T>
I
[J(my_error e) // handle my_error objects
{
switch(e)
{
case my_error::el:
...., // Handle el error values
break;
case my_error::e2:
case my_error::e3:
...., // Handle e2 and e3 error values
break;
default:
....; // Handle bad my_error values
break;
)i

If a ny_error object is available, LEAF will call our error handler. If not, the failure will be
forwarded to the caller.

23

This can be rewritten using the mat ch predicate to organize the different cases in different error
handlers. The following is equivalent:

return leaf::try_handle_some(

[]
{

return f(); // returns leaf::result<T>

}I

[1(leaf::match<my_error, my_error::el1> m)

{

assert(m.matched == my_error::el);

.
ey

}

[1(leaf::match<my_error, my_error::e2, my_error::e3>m)

{

assert(m.matched == my_error::e2 || m.matched == my_error::e3);

.
ey

}I

[J(my_error e)

{
)

The first argument to the mat ch template generally specifies the type E of the error object e that
must be available for the error handler to be considered at all. Typically, the rest of the arguments
are values. The error handler is dropped if e does not compare equal to any of them.

In particular, mat ch works great with std: : error_code. The following handler is designed to
handle ENCENT errors:

[](leaf::match<std::error_code, std::errc::no_such_file_or_directory>)
{
}

This, however, requires C++17 or newer. LEAF provides the following workaround, compatible with
C++11:

[1(leaf::match<leaf::condition<std::errc>, std::errc::no_such_file_or_directory>)

{
}

It is also possible to select a handler based on st d: : error _cat egory. The following handler will
match any std: : error _code of the st d: : generi c_cat egory (requires C++17 or newer):

24

[](std::error_code, leaf::category<std::errc>>)

{
}
O See mat ch for more examples.
w
The following predicates are available:

mat ch: as described above.

mat ch_val ue: where mat ch<E, V..> compares the object e of type E with the values V..,
mat ch_val ue<E, V..»> compare e. val ue with the values V...

mat ch_nenber : similar to mat ch_val ue, but takes a pointer to the data member to compare;
that is, match_nenber <&E: : val ue, V.> is equvialent to match_val ue<g, V..»>. Note,
however, that mat ch_nenber requires C++17 or newer, while mat ch_val ue does not.

cat ch_<Ex..>: Similar to mat ch, but checks whether the caught st d: : excepti on object can be
dynani c_cast to any of the Ex types.

i f _not is a special predicate that takes any other predicate Pred and requires that an error
object of type E is available and that Pr ed evaluates to f al se. For example, i f _not <nat ch<E,
V..>>requires that an object e of type E is available, and that it does not compare equal to any of
the specified V...

The predicate system is easily extensible, see Predicates.

e See also Working with std: : error _code,std::error _condition.

Reusing Common Error Handlers

Consider this snippet:

leaf::try_handle_all(

[&]
{

return f(); // returns leaf::result<T>

}I

[1(my_error_enum x)

{
}l

[J(read_file_error_enum y, e_file_name const & fn)

{

25

b

try handle_all | e_file_nane

If we need to attempt a different set of operations yet use the same handlers, we could repeat the
same thing with a different function passed as the TryBl ock fortry_handl e_al | :

leaf::try_handle_all(

[&]
{

return g(); // returns leaf::result<T>

}I

[1(my_error_enum x)

{
}I

[J(read_file_error_enum y, e_file_name const & fn)

{
}I

b))
That works, but it is also possible to bind the error handlersin a st d: : t upl e:

auto error_handlers = std::make_tuple(

[1(my_error_enum x)

{
}I

[J(read_file_error_enum y, e_file_name const & fn)

{
}I
[]

26

};
The er r or _handl er s tuple can later be used with any error handling function:

leaf::try_handle_all(

[&]
{
// Operations which may fail @

}I

error_handlers);
leaf::try_handle_all(

[&]
{
// Different operations which may fail @

}I

error_handlers); ®

try handle_all |error_info

@ One set of operations which may fail...
@ A different set of operations which may fail...

® ... both using the same error _handl ers.

Error handling functions accept a st d: : t upl e of error handlers in place of any error handler. The
behavior is as if the tuple is unwrapped in-place.

Transporting Errors Between Threads

Like exceptions, LEAF error objects are local to a thread. When using concurrency, sometimes we
need to collect error objects in one thread, then use them to handle errors in another thread.

LEAF supports this functionality with or without exception handling. In both cases error objects are
captured and transported in a | eaf : : r esul t <T> object.

Transporting Errors Between Threads Without Exception Handling

Let’s assume we have a task that we want to launch asynchronously, which produces a
task_resul t but could also fail:

27

leaf::result<task result> task();

Because the task will run asynchronously, in case of a failure we need to capture any produced
error objects but not handle errors. We do this by invokingtry_capture_al | :

std::future<leaf::result<task_result>> launch_task() noexcept

{
return std::async(
std::launch::async,
[&]
{
return leaf::try_capture_all(task);

P

}

result |try capture_al

In case of a failure, the returned from try_capture_al | resul t <T> object holds all error objects
communicated out of the t ask, at the cost of dynamic allocations. The r esul t <T> object can then
be stashed away or moved to another thread, and later passed to an error-handling function to
unload its content and handle errors:

//std::future<leaf::result<task result>> fut;
fut.wait();

return leaf::try_handle_some(

[&]() -> leaf::result<void>

{
BOOST_LEAF_AUTO(r, fut.get());

//Success!
return { }

}I

[1(ET1 e1, E2 e2)

{
//Deal with E1, E2

return { };

H

[1(E3 e3)

{
//Deal with E3
return { };

)

28

try handle sone |result | BOOST LEAF AUTO

e Follow this link to see a complete example program: try capture all result.cpp.

Transporting Errors Between Threads With Exception Handling

Let’s assume we have an asynchronous t ask which produces at ask_r esul t but could also throw:

task_result task();

We use try_capture_al | to capture all error objects and the std:: current_exception() in a

resul t <T>:

std::future<leaf::result<task result>> launch_task()
{
return std::async(
std::launch::async,
[&]
{
return leaf::try_capture_all(task);
)

To handle errors after waiting on the future, we use t ry_cat ch as usual:

//std::future<leaf::result<task result>> fut;
fut.wait();

return leaf::try_catch(

[&]

{
leaf::result<task_result> r = fut.get();
task_result v = r.value(); // throws on error
//Success!

h

[1(ET1 e1, E2 e2)

{
//Deal with E1, E2

1

[1(E3 e3)

{
//Deal with E3

try capture all

29

https://github.com/boostorg/leaf/blob/master/example/try_capture_all_result.cpp?ts=4

)

try catch |result

0 Follow this link to see a complete example program: try capture all eh.cpp.

Classification of Failures

It is common for an interface to define an enum that lists all possible error codes that the API
reports. The benefit of this approach is that the list is complete and usually well documented:

enum error_code

read_error,
size error,
eof _error,

+

The disadvantage of such flat enums is that they do not support handling of a whole class of
failures. Consider the following LEAF error handler:

[1(leaf::match<error_code, size error, read error, eof_error>, leaf::e_file_name const
& fn)
{

std::cerr << "Failed to access

}I

<< fn.value << std::endl;

match | e file nane

It will get called if the value of the error_code enum communicated with the failure is one of
size_error,read_error oreof _error.In short, the idea is to handle any input error.

But what if later we add support for detecting and reporting a new type of input error, e.g.
perm ssions_error? It is easy to add that to our error_code enum; but now our input error
handler won’t recognize this new input error — and we have a bug.

Using exceptions is an improvement because exception types can be organized in a hierarchy in
order to classify failures:

struct input_error: std::exception { };

30

https://github.com/boostorg/leaf/blob/master/example/try_capture_all_eh.cpp?ts=4

struct read_error: input_error { };
struct size_error: input_error { };
struct eof_error: input_error { };

In terms of LEAF, our input error exception handler now looks like this:

[1(input_error &, leaf::e_file_name const & fn)

{

std::cerr << "Failed to access

}I

<< fn.value << std::endl;

This is future-proof, but still not ideal, because it is not possible to refine the classification of the
failure after the exception object has been thrown.

LEAF supports a novel style of error handling where the classification of failures does not use error
code values or exception type hierarchies. Instead of our er r or _code enum, we could define:

struct input_error { };
struct read_error { };
struct size_error { };
struct eof _error { };

With this in place, we could define a functionfi |l e_r ead:

leaf::result<void> file_read(FILE & f, void * buf, int size)

{
int n = fread(buf, 1, size, &f);

if(ferror(&f))
return leaf::new_error(input_error{}, read_error{}, leaf::e_errno{errno}); @®

if(nl=size)
return leaf::new_error(input_error{}, eof_error{}); @

return { };

}

result | new error | e_errno

@ This error is classified asi nput _error andread_error.

@ This error is classified as i nput _error and eof _error.

Or, even better:

31

leaf::result<void> file_read(FILE & f, void * buf, int size)
{
auto load = leaf::on_error(input_error{}); @

int n = fread(buf, 1, size, &f);

if(ferror(&f))
return leaf::new error(read error{}, leaf::e _errno{errno}); @

if(nl=size)
return leaf::new_error(eof_error{}); ®

return { };

result |on_error | new error | e_errno

® Any error escaping this scope will be classified as i nput _err or

@ In addition, this error is classified asread_error.

® In addition, this error is classified as eof _error.

This technique works just as well if we choose to use exception handling, we just call

| eaf : : t hrow_excepti on instead of | eaf : : new _error:

void file_read(FILE & f, void * buf, int size)
{
auto load = leaf::on_error(input_error{});

int n = fread(buf, 1, size, &f);

if(ferror(&f))
leaf::throw_exception(read_error{}, leaf::e_errno{errno});

if(nl=size)
leaf::throw_exception(eof_error{});

on_error | throw exception | e_errno

If the type of the first argument passed to | eaf : : t hr ow_excepti on derives from
6 std:: exception, it will be used to initialize the thrown exception object. Here

this is not the case, so the function throws a default-initialized st d: : excepti on

object, while the first (and any other) argument is associated with the failure.

Now we can write a future-proof handler for any i nput _error:

32

[1(input_error, leaf::e_file_name const & fn)

{

std::cerr << "Failed to access

}I

n

<< fn.value << std::endl;

Remarkably, because the classification of the failure does not depend on error codes or on
exception types, this error handler can be used with try_cat ch if we use exception handling, or
withtry_handl e_sone/try_handl e_al | if we do not.

Converting Exceptions tor esul t <T>

It is sometimes necessary to catch exceptions thrown by a lower-level library function, and report
the error through different means, to a higher-level library which may not use exception handling.

Error handlers that take arguments of types that derive from std: : excepti on
work correctly —regardless of whether the error object itself is thrown as an
(r) exception, or loaded into a cont ext . The technique described here is only needed
v when the exception must be communicated through functions which are not
exception-safe, or are compiled with exception handling disabled.

Suppose we have an exception type hierarchy and a function conput e_answer _t hr ows:

class error_base: public std::exception { };
class error_a: public error_base { };
class error_b: public error_base { };
class error_c: public error_base { };

int compute_answer_throws()

{
switch(rand()%4)

{
default: return 42;

case 1: throw error_a();
case 2: throw error_b();
case 3: throw error_c();
}
}

We can write a simple wrapper using exception_to_result, which calls
conput e_answer _t hr ows and switches to r esul t <i nt > for error handling:

leaf::result<int> compute_answer() noexcept

{

return leaf::exception_to_result<error_a, error_b>(

[]

33

{

return compute_answer_throws();

)

result | exception_to_result

The exception_to_result template takes any number of exception types. All exception types
thrown by the passed function are caught, and an attempt is made to convert the exception object
to each of the specified types. Each successfully-converted slice of the caught exception object, as
well as the return value of std: : current _exception, are copied and loaded, and in the end the
exception is converted to a r esul t <T> object.

(In our example, error_a and error_b slices as communicated as error objects, but error_c

exceptions will still be captured by st d: : excepti on_ptr).

Here is a simple function which prints successfully computed answers, forwarding any error

(originally reported by throwing an exception) to its caller:

leaf::result<void> print_answer() noexcept

{

}

BOOST_LEAF_AUTO(answer, compute_answer());
<< answer << std::endl;

std::cout << "Answer:
return { };

resul t | BOOST_LEAF_AUTO

Finally, here is the scope that handles the errors—it will work correctly regardless of whether

error_a and error _b objects are thrown as exceptions or not.

34

leaf::try_handle_all(

[TO) -> leaf::result<void>

{
BOOST_LEAF_CHECK(print_answer());
return { };

h

[1(error_a const & e)

{

std::cerr << "Error A!" << std::endl;

}I

[1(error_b const & e)

{

std::cerr << "Error B!" << std::endl;

}I

[]
{

std::cerr << "Unknown error!" << std::endl;

)

try handle_all |result | BOOST LEAF_CHECK

e The complete program illustrating this technique is available here.

Using error _noni t or to Report Arbitrary Errors from
C-callbacks

Communicating information pertaining to a failure detected in a C callback is tricky, because C
callbacks are limited to a specific function signature, which may not use C++ types.

LEAF makes this easy. As an example, we’ll write a program that uses Lua and reports a failure
from a C++ function registered as a C callback, called from a Lua program. The failure will be
propagated from C++, through the Lua interpreter (written in C), back to the C++ function which
called it.

C/C++ functions designed to be invoked from a Lua program must use the following signature:
int do_work(lua_State * L) ;

Arguments are passed on the Lua stack (which is accessible through L). Results too are pushed onto
the Lua stack.

First, let’s initialize the Lua interpreter and register a function, do_wor k, as a C callback available
for Lua programs to call:

std::shared_ptr<lua_State> init_lua_state() noexcept

{
std::shared_ptr<lua_State> L(1lua_open(), &lua_close); @
lua_register(&*L, "do_work", &do_work); @
lual_dostring(&*L, "\ ®

\n function call_do_work()\

\n return do_work()\

\n end");

return L;

}

@ Create anew | ua_St at e. We’ll use st d: : shar ed_pt r for automatic cleanup.

35

https://github.com/boostorg/leaf/blob/master/example/exception_to_result.cpp?ts=4

@ Register the do_wor k C++ function as a C callback, under the global name do_wor k. With this,
calls from Lua programs to do_wor k will land in the do_wor k C++ function.

® Pass some Lua code as a C string literal to Lua. This creates a global Lua function called
cal | _do_wor k, which we will later ask Lua to execute.

Next, let’s define our enumused to communicate do_wor k failures:

enum do_work _error_code
{

ecl=1,

ec?

+

We’re now ready to define the do_wor k callback function:

int do_work(lua_State * L) noexcept
{
bool success = rand() % 2; @
if(success)
{
lua_pushnumber (L, 42); @
return 1;

}

else
{
(void) leaf::new_error(ecl); ®
return lual_error(L, "do_work_error"); @
}
}

new error || oad

@ "Sometimes" do_wor k fails.
@ In case of success, push the result on the Lua stack, return back to Lua.

® Generate a new error _i d and associate a do_wor k_er r or _code with it. Normally, we’d return
this in a | eaf: : resul t <T>, but the do_wor k function signature (required by Lua) does not
permit this.

@ Tell the Lua interpreter to abort the Lua program.
Now we’ll write the function that calls the Lua interpreter to execute the Lua function

cal | _do_wor k, which in turn calls do_wor k. We’ll return r esul t <i nt >, so that our caller can get
the answer in case of success, or an error:

leaf::result<int> call_lua(lua_State * L)

{
lua_getfield(L, LUA_GLOBALSINDEX, "call_do_work");

36

error_monitor cur_err;

if(int err = lua_pcall(L, 0, 1, 0)) ®

{
auto load = leaf::on_error(e_lua_error_message{lua_tostring(L,1)}); @
lua_pop(L,1);

return cur_err.assigned_error_id().load(e_lua_pcall_error{err}); ®
}
else
{
int answer = lua_tonumber(L, -1); @
lua_pop(L, 1);
return answer;
}
}

result |on_error | error_nonitor

@ Ask the Lua interpreter to call the global Lua function cal | _do_wor k.
@ on_error works as usual.

® | oad will use the error_id generated in our Lua callback. This is the same error_id the
on_error uses as well.

@ Success! Just return the i nt answer.

Finally, here is the mai n function which exercises cal | _I ua, each time handling any failure:

int main() noexcept

{
std::shared_ptr<lua_State> L=init_lua_state();

for(int i=0; i!=10; ++i)
{
leaf::try_handle_all(

[&]1() -> leaf::result<void>

{
BOOST_LEAF_AUTO(answer, call_lua(&*L));
std::cout << "do_work succeeded, answer='

<< answer << '"\n'; @

return { };
I,
[1(do_work_error_code e) @
{
std::cout << "Got do _work error_code = " << e << "I\n";
I

[1(e_lua_pcall_error const & err, e_lua_error_message const & msg) ®

{

37

std::cout << "Got e_lua_pcall_error, Lua error code = " << err.value << ", "
<< msg.value << "\n";

}I

[J(leaf::error_info const & unmatched)
{
std::cerr <<
"Unknown failure detected" << std::endl <<

"Cryptic diagnostic information follows" << std::endl <<
unmatched;

)

try handle_all |result | BOOST_LEAF_AUTO | error_info

® If the call to cal | _I ua succeeded, just print the answer.
@ Handle do_wor k failures.

® Handle all other | ua_pcal | failures.

e Follow this link to see the complete program: lua_callback result.cpp.

When using Lua with C++, we need to protect the Lua interpreter from exceptions
that may be thrown from C++ functions installed as | ua_CFuncti on callbacks.
@ Here is the program from this section rewritten to use a C++ exception (instead of

l eaf::result) to safely communicate errors out of the do_work function:
lua callback eh.cpp.

Diagnostic Information

LEAF is able to automatically generate diagnostic messages that include information about all error
objects available to error handlers:

enum class error_code
{

read_error,

write error

+

leaf::try_handle_all(

[1() -> leaf::result<void> @
{

return leaf::new _error(error_code::write _error, leaf::e file name{ "file.txt" }

38

https://github.com/boostorg/leaf/blob/master/example/lua_callback_result.cpp?ts=4
https://github.com/boostorg/leaf/blob/master/example/lua_callback_eh.cpp?ts=4

H
[1(leaf::match<error_code, error_code::read error>) @
{
std::cerr << "Read error!" << std::endl;
H

[1(leaf::verbose_diagnostic_info const & info) ®
{

std::cerr << "Unrecognized error detected, cryptic diagnostic information
follows.\n" << info;

)

® We handle all failures that occur in this try block.
@ One or more error handlers that should handle all possible failures.

® This "catch all" error handler is required by t ry_handl e_al | . It will be called if LEAF is unable
to use another error handler.

The ver bose_di agnosti c_i nf o output for the snippet above tells us that we got an error _code
with value 1 (wite_error), and an object of type e_fil e_name with "file.txt" stored in its
. val ue:

Unrecognized error detected, cryptic diagnostic information follows.
leaf::verbose_diagnostic_info for Error ID = 1:

[with Name = error_code]: 1

Unhandled error objects:

[with Name = boost::leaf::e_file_name]: file.txt

To print each error object, LEAF attempts to bind an unqualified call to oper at or <<, passing a
st d: : ostreamand the error object. If that fails, it will also attempt to bind oper at or << that takes
the . val ue of the error type. If that also does not compile, the error object value will not appear in
diagnostic messages, though LEAF will still print its type.

Even with error types that define a printable . val ue, the user may still want to overload
oper at or << for the enclosing st ruct, e.g.:

struct e_errno

{

int value;

friend std::ostream & operator<<(std::ostream & os, e_errno const & e)
{
return os << "errno = " << e.value << ", \"" << strerror(e.value) << '""";
}
lis

39

The e_errno type above is designed to hold er r no values. The defined oper at or << overload will
automatically include the output from strerror when e_errno values are printed (LEAF defines
e_errnoin<boost/ | eaf/ common. hpp>, together with other commonly-used error types).

Using ver bose_di agnosti c_i nfo comes at a cost. Normally, when the program attempts to
communicate error objects of types which are not used in any error handling scope in the current
call stack, they are discarded, which saves cycles. However, if an error handler is provided that
takes ver bose_di agnosti c_i nf o argument, such objects are stored on the heap instead of being
discarded. They appear under Unhandled error objects in the output from
ver bose_di agnosti c_i nfo.

If handling ver bose_di agnosti c_i nf o is considered too costly, use di agnosti c_i nf o instead:

leaf::try_handle_all(

[TO) -> leaf::result<void>

{
return leaf::new error(error_code::write error, leaf::e file name{ "file.txt" }
K
i
[1(leaf::match<error_code, error_code::read error>)
{
std::cerr << "Read error!" << std::endl;
H

[](leaf::diagnostic_info const & info)

{
std::cerr << "Unrecognized error detected, cryptic diagnostic information
follows.\n" << info;

)

In this case, the output may look like this:

Unrecognized error detected, cryptic diagnostic information follows.
leaf::diagnostic_info for Error ID = 1:
[with Name = error_code]: 1

Notice how the diagnostic information for e_fi | e_nane changed: because it was discarded, LEAF
is unable to print it.

The automatically-generated diagnostic messages are developer-friendly, but not
user-friendly. Therefore, oper at or << overloads for error types should only print

@ technical information in English, and should not attempt to localize strings or to
format a user-friendly message; this should be done in error handling functions
specifically designed for that purpose.

40

Working with st d: : error_code,
std::error_condition

Introduction

The relationship between st d: : error _code and std: : error _condi ti on is not easily understood
from reading the standard specification. This section explains how they’re supposed to be used, and
how LEAF interacts with them.

The idea behind st d: : error _code is to encode both an integer value representing an error code,
as well as the domain of that value. The domain is represented by a std::error_category
reference. Conceptually, a std::error_code is like a pair<std::error_category const &,
int>.

Let’s say we have this enum

enum class libfoo_error

{
el =1,
e?,
e3

I

We want to be able to transport | i bf oo_error values in std: : error_code objects. This erases
their static type, which enables them to travel freely across API boundaries. To this end, we must
define astd: : error_cat egory that represents our | i bf oo_error type

std::error_cateqory const & libfoo_error_category()

{
struct category: std::error_category
{
char const * name() const noexcept override
{
return "libfoo";
}
std::string message(int code) const override
{
switch(libfoo_error(code))
{
case libfoo_error::el: return "e1";
case libfoo_error::e2: return "e2";
case libfoo_error::e3: return "e3";
default: return "error";
}
}
7

41

static category c;
return c;

}

We also need to inform the standard library that |ibfoo_error is compatible with
std::error_code, and provide a factory function which can be used to make std: : error_code
objects out of I i bf oo_err or values:

namespace std

{
template <>
struct is_error_code_enum<libfoo_error>: std::true_type
{
+
}
std::error_code make _error_code(libfoo_error e)
{
return std::error_code(int(e), libfoo_error_category());
}

With this in place, if we receive a std: : error _code, we can easily check if it represents some of
thel i bf oo_error values we’re interested in:

std::error_code f();

auto ec = f();
if(ec == libfoo_error::e1 || ec == libfoo_error::e2)

{
// We got either a libfoo_error::e1 or a libfoo_error::e2
}
This works because the standard library detects that

std::is_error_code_enunxlibfoo error>::val ue is t rue, and then uses nake_error_code
to create a st d: : error_code object it actually uses to compare to ec.

So far so good, but remember, the standard library defines another type also,
std::error_condition. The first confusing thing is that in terms of its physical representation,
std::error_condition is identical to std::error_code; that is, it is also like a pair of
std::error_category reference and an i nt. Why do we need two different types which use
identical physical representation?

The key to answering this question is to understand that st d: : er r or _code objects are designed to
be returned from functions to indicate failures. In contrast, std: : error_condi ti on objects are
never supposed to be communicated; their purpose is to interpret the std:: error_code values

42

being communicated. The idea is that in a given program there may be multiple different "physical”
(maybe platform-specific) std::error_code values which all indicate the same "logical"
std::error_condition.

This leads us to the second confusing thing about std::error_condition: it uses the same
std::error_category type, but for a completely different purpose: to specify what
std:: error_code values are equivalent to what st d: : error_condi ti on values.

Let’s say that in addition to |ibfoo, our program uses another library, |ibbar, which
communicates failures in terms of std::error_code with a different error category. Perhaps
| i bbar _error looks like this:

enum class libbar_error

{
el =1,
e2,
e3,
ed

+

// Boilerplate omitted:

// - libbar_error_category()

// - specialization of std::is_error_code_enum

// - make_error_code factory function for libbar_error.

We can now use std: : error_condition to define the logical error conditions represented by the
std: : error_code values communicated by | i bf oo and | i bbar:

enum class my_error_condition @

{
cl =1,
c?

+

std::error_category const & libfoo_error_category() @

{

struct category: std::error_category

{

char const * name() const noexcept override

{

return "my_error_condition";

}

std::string message(int cond) const override

{

switch(my_error_condition(code))

case my_error_condition::c1: return "c1";
case my_error_condition::c2: return "c2";

43

default: return "error";
}
}

bool equivalent(std::error_code const & code, int cond) const noexcept
{
switch(my_error_condition(cond))
{
case my_error_condition::c1: @
return
code == libfoo_error::el ||
code == libbar_error::e3 ||
code == libbar_error::e4;
case my_error_condition::c2: @
return
code == libfoo_error::e2 ||
code == libbar_error::el ||
code == libbar_error::e2;
default:
return false;
}
¥
}

static category c;
return c;

}

namespace std

{
template <> ®
class is_error_condition_enum<my_error_condition>: std::true_type

{
+;
}

std::error_condition make_error_condition(my_error_condition e) ®

{

return std::error_condition(int(e), my_error_condition_error_cateqgory());

}

® Enumeration of the two logical error conditions, c1 and c2.

@ Define the std::error_category for std::error_condition objects that represent a
my_error_condition.

® Here we specify that any of | i bf oo: error::el, | ibbar_error::e3 and |ibbar_error::e4
are logically equivalent to my_error _condi ti on:: c1, and that...

@ ..any of libfoo:error::e2, libbar_error::el and |ibbar_error::e2 are logically
equivalent tomy_error_condi tion::c2.

44

® This specialization tells the standard library that the my_er ror _condi t i on enum is designed to
be used with st d: : error _condi ti on.

® The factory function to make std::error_condition objects out of my_error_condition
values.

Phew!

Now, if we have a std::error_code object ec, we can easily check if it is equivalent to
nmy_error_condi tion:: cl like so:

if(ec == my_error_condition::c1)
{

// We have a c1 in our hands

}

Again, remember that beyond defining the std::error_category for std::error_condition
objects initialized with a ny_error_condi ti on value, we don’t need to interact with the actual
std::error_condition instances: theyre created when needed to compare to a
std:: error_code, and that’s pretty much all they’re good for.

Support in LEAF

The match predicate can be used as an argument to a LEAF error handler to match a
std::error_code with a given error condition. For example, to handle
nmy_error_condition::cl (see above), we could use:

leaf::try_handle_some(

[]
{

return f(); // returns leaf::result<T>

}I

[1(leaf::match<std::error_code, my_error_condition::c1> m)
{
assert(m.matched == my_error_condition::c1);

)

See mat ch for more examples.

Boost Exception Integration

Instead of the boost : : get _error_i nf o API defined by Boost Exception, it is possible to use LEAF
error handlers directly. Consider the following use of boost : : get _error _i nf o:

45

https://www.boost.org/doc/libs/release/libs/exception/doc/get_error_info.html

typedef boost::error_info<struct my_info_, int> my_info;
void f(); // Throws using boost::throw_exception

void g()

{
try
{
f(0);
H

catch(boost::exception & e)

{

if(int const * x = boost::get_error_info<my_info>(e))

std::cerr << "Got my_info with value = " << *x;

)
}

We can rewrite g to access ny_i nf o using LEAF:

#include <boost/leaf/handle_errors.hpp>

void g()

{
leaf::try_catch(

[]
{

fO);
},

[1(my_info x)
{
std::cerr << "Got my_info with value = " << x.value();

)

try catch

Taking nmy_i nf o means that the handler will only be selected if the caught exception object carries
ny_i nf o (which LEAF accesses via boost : : get _error _i nf o).

The use of mat ch is also supported:

void g()

{
leaf::try_catch(

[]

46

{

f(0);
I
[1(leaf::match_value<my_info, 42>)
{
std::cerr << "Got my_info with value = 42";
)

Above, the handler will be selected if the caught exception object carries nmy_i nf o with . val ue()
equal to 42.

47

Examples

See github.

48

https://github.com/boostorg/leaf/tree/master/example

Synopsis
This section lists each public header file in LEAF, documenting the definitions it provides.

LEAF headers are designed to minimize coupling:

* Headers needed to report or forward but not handle errors are lighter than headers providing
error handling functionality.

* Headers that provide exception handling or throwing functionality are separate from headers
that provide error handling or reporting but do not use exceptions.

A standalone single-header option is available; please see Distribution.

Error Reporting

error. hpp

#include <boost/leaf/error.hpp>
namespace boost { namespace leaf {
class error_id
{
public:
error_id() noexcept;
template <class Enum>
error_id(Enum e, typename std::enable_if<std::is_error_code_enum<Enum>::
value, Enum>::type * = @) noexcept;

error_id(std::error_code const & ec) noexcept;

int value() const noexcept;
explicit operator bool() const noexcept;

std::error_code to_error_code() const noexept;
friend bool operator==(error_id a, error_id b) noexcept;
friend bool operator!=(error_id a, error_id b) noexcept;

friend bool operator<(error_id a, error_id b) noexcept;

template <class... Item>
error_id load(Item && ... item) const noexcept;

template <class CharT, class Traits>
friend std::ostream & operator<<(std::basic_ostream<CharT, Traits> &,

49

error_id);

};
bool is_error_id(std::error_code const & ec) noexcept;

template <class... Item>
error_id new_error(Item &% ... item) noexcept;

error_id current_error() noexcept;
[111711771177777117777717117771777111717111717

template <class Ctx>

class context_activator

{
context_activator(context_activator const &) = delete;
context_activator & operator=(context_activator const &) = delete;

public:

explicit context_activator(Ctx & ctx) noexcept;
context_activator(context_activator &&) noexcept;
~context_activator() noexcept;

+;

template <class Ctx>
context_activator<Ctx> activate_context(Ctx & ctx) noexcept;

template <class R>

struct is_result_type: std::false_type
{

I

template <class R>

struct is_result_type<R const>: is_result_type<R>
{

b

}l

#define BOOST_LEAF_ASSIGN(v, r)\
auto && <<temp>> = r;\
if(I<<temp>>)\
return <<temp>>.error();\
v = std::forward<decltype(<<temp>>)>(<<temp>>).value()

#define BOOST_LEAF_AUTO(v, r)\
BOOST_LEAF_ASSIGN(auto v, r)

#if BOOST_LEAF_CFG_GNUC_STMTEXPR

#define BOOST_LEAF_CHECK(r)\

({\
auto && <<temp>> = (r);\
if(I<<temp>>)\
return <<temp>>.error();\
std: :move(<<temp>>);\

}).value()

flelse

#define BOOST_LEAF_CHECK(r)\
{\
auto && <<temp>> = r;\
if(I<<temp>>)\
return <<temp>>.error()\

}

#endif

#define BOOST_LEAF_NEW_ERROR <<exact-definition-unspecified>>

Reference:error_id |is_error_id|new error |current_error | context_activator
| activate_context |is_result_type | BOOST_LEAF_ASSI GN | BOOST_LEAF_AUTO |
BOOST LEAF_CHECK | BOOST LEAF_NEW ERROR

common. hpp

#include <boost/leaf/common.hpp>
namespace boost { namespace leaf {
struct e_api_function { char const * value; };
struct e_file_name { std::string value; };
struct e_type_info_name { char const * value; };
struct e_at_line { int value; };
struct e_errno
{
int value;
explicit e_errno(int value=errno);
template <class CharT, class Traits>
friend std::ostream & operator<<(std::basic_ostream<CharT, Traits> &, e_errno

const &);

+;

namespace windows

{

struct e _LastError

{

unsigned value;
explicit e_LastError(unsigned value);

#if BOOST_LEAF_CFG_WIN32
e LastError();

template <class CharT, class Traits>
friend std::ostream & operator<<(std::basic_ostream<CharT, Traits> &,
e lLastError const &);

#endif
iE
}
}}
Reference: e_api _function | e_file_nane |e_at_line | e_type_info_nane |
e_source_location |e_errno | e_LastError
result. hpp

#include <boost/leaf/result.hpp>
namespace boost { namespace leaf {

template <class T>
class result

{

public:

using value_type = T;

// NOTE: Copy constructor implicitly deleted.
result(result && r) noexcept;

template <class U, class = typename std::enable_if<std::is_convertible<U, T>
1:value>::type>

result(result<U> && r) noexcept;

result() noexcept;

result(T & v) noexcept;

result(T const & v);

32

result(error_id err) noexcept;

template <class U, class = typename std::enable_if<std::is_convertible<U, T>

s:value>::type>

#if

result(U && u);
BOOST_LEAF_CFG_STD_SYSTEM_ERROR
result(std::error_code const & ec) noexcept;

template <class Enum, class = typename std::enable_if<std::is_error_code_enum

<Enum>::value, int>::type>

result(Enum e) noexcept;

#endif

// NOTE: Assignment operator implicitly deleted.
result & operator=(result & r) noexcept;

template <class U, class = typename std::enable_if<std::is_convertible<U, T>

1:value>::type>

result & operator=(result<U> && r) noexcept;

bool has_value() const noexcept;
bool has_error() const noexcept;
explicit operator bool() const noexcept;

const & value() const §&;

& value() &;

const && value() const &&;
&& value() &&;

— - = —

const * operator->() const noexcept;
* operator->() noexcept;

— —

const & operator*() const & noexcept;

& operator*() & noexcept;

const && operator*() const &% noexcept;
&& operator*() && noexcept;

— - - —

<<unspecified-type>> error() noexcept;

template <class... Item>
error_id load(Item && ... item) noexcept;

void unload();

template <class CharT, class Traits>
friend std::ostream & operator<<(std::basic_ostream<CharT, Traits> &, result

const &);

+

33

template <>
class result<void>

{
public:

using value_type = void;

// NOTE: Copy constructor implicitly deleted.
result(result & r) noexcept;

result() noexcept;

result(error_id err) noexcept;
#if BOOST_LEAF_CFG_STD_SYSTEM_ERROR

result(std::error_code const & ec) noexcept;

template <class Enum, typename std::enable_if<std::is_error_code_enum<Enum>
::value, Enum>::type>

result(Enum e) noexcept;

#endif

// NOTE: Assignment operator implicitly deleted.
result & operator=(result && r) noexcept;

explicit operator bool() const noexcept;
void value() const;

void const * operator->() const noexcept;
void * operator->() noexcept;

void operator*() const noexcept;
<<unspecified-type>> error() noexcept;

template <class... Item>
error_id load(Item && ... item) noexcept;

void unload();
template <class CharT, class Traits>
friend std::ostream & operator<<(std::basic_ostream<CharT, Traits> &, result

const &);

+;

struct bad_result: std::exception { };

template <class T>
struct is_result_type<result<T>>: std::true_type

{
+;

}}

Reference:result |is_result_type

on_error. hpp

#include <boost/leaf/on_error.hpp>
namespace boost { namespace leaf {

template <class... Item>
<<unspecified-type>> on_error(Item && ... e) noexcept;

class error_monitor
{
public:

error_monitor() noexcept;

error_id check() const noexcept;
error_id assigned_error_id() const noexcept;

+
)

Reference: on_error | error_nonitor

exception. hpp

#include <boost/leaf/exception.hpp>
namespace boost { namespace leaf {

template <class Ex, class... E> @
[[noreturn]] void throw_exception(Ex &&, E && ...);

template <class E1, class... E> @
[[noreturn]] void throw_exception(E1 &&, E && ...);

[[noreturn]] void throw_exception();

template <class Ex, class... E> @

55

[[noreturn]] void throw_exception(error_id id, Ex &&, E && ...);

template <class E1, class... E> @
[[noreturn]] void throw_exception(error_id id, E1 &&, E && ...);

[[noreturn]] void throw_exception(error_id id);

template <class... Ex, class F>
<<result<T>-deduced>> exception_to_result(F && f) noexcept;

})

#define BOOST_LEAF_THROW_EXCEPTION <<exact-definition-unspecified>>

Reference: t hr ow_excepti on | BOOST_LEAF_THROW EXCEPTI ON

® Only enabled if std::is_base_of<std::exception, Ex>::value.

@ Only enabled if !std::is_base_of<std::exception, E1>::value.

Error Handling

cont ext. hpp

#include <boost/leaf/context.hpp>
namespace boost { namespace leaf {

template <class... E>
class context

{

context(context const &) = delete;
context & operator=(context const &) = delete;

public:
context() noexcept;
context(context &% x) noexcept;
~context() noexcept;
void activate() noexcept;
void deactivate() noexcept;
bool is_active() const noexcept;

void unload(error_id) noexcept;

void print(std::ostream & os) const;

56

template <class CharT, class Traits>
friend std::ostream & operator<<(std::basic_ostream<CharT, Traits> &, context
const &);

template <class R, class... H>
R handle error(R & H && ...) const;
}i

[1I1777777777777777777777777777777777777777

template <class... H>
using context_type_from_handlers = typename <<unspecified>>::type;

template <class... H>
BOOST_LEAF_CONSTEXPR context_type_from_handlers<H...> make_context() noexcept;

template <class... H>

BOOST_LEAF_CONSTEXPR context_type_from_handlers<H...> make_context(H && ...)
noexcept,
}}

Reference: cont ext | context _type from handl ers | nake cont ext

handl e_errors. hpp

#include <boost/leaf/handle_errors.hpp>
namespace boost { namespace leaf {

template <class TryBlock, class... H>
typename std::decay<decltype(std::declval<TryBlock>()().value())>::type
try_handle_all(TryBlock && try_block, H && ... h);

template <class TryBlock, class... H>
typename std::decay<decltype(std::declval<TryBlock>()())>::type
try_handle_some(TryBlock && try_block, H && ... h);

template <class TryBlock, class... H>
typename std::decay<decltype(std::declval<TryBlock>()())>::type
try_catch(TryBlock && try_block, H & ... h);

#if BOOST_LEAF_CFG_CAPTURE
template <class TryBlock>
result<T> // T deduced depending on TryBlock return type
try_capture_all(TryBlock && try_block);

#endif

57

[I1177777777777777777777777777777777777777

class error_info

{

//No public constructors
public:
error_id error() const noexcept;

bool exception_caught() const noexcept;
std::exception const * exception() const noexcept;

template <class CharT, class Traits>
friend std::ostream & operator<<(std::basic_ostream<CharT, Traits> &,
error_info const &);

+

class diagnostic_info: public error_info

{

//No public constructors

template <class CharT, class Traits>
friend std::ostream & operator<<(std::basic_ostream<CharT, Traits> &,
diagnostic_info const &);

+;

class verbose_diagnostic_info: public error_info

{

//No public constructors

template <class CharT, class Traits>
friend std::ostream & operator<<(std::basic_ostream<CharT, Traits> &,
diagnostic_info const &);

+
}}

Reference:try _handle_all |try handl e_some |try catch |try capture_all |
error_info | diagnostic_info | verbose diagnostic_ info

to_variant. hpp

#include <boost/leaf/to_variant.hpp>
namespace boost { namespace leaf {

// Requires at least C++17
template <class... E, class TryBlock>

38

std::variant<
typename std::decay<decltype(std::declval<TryBlock>()().value())>::type
std::tuple<
std::optional<E>...>>
to_variant(TryBlock && try_block);

}}

Reference: t o _vari ant

pred. hpp

#include <boost/leaf/pred.hpp>
namespace boost { namespace leaf {

template <class T>

struct is_predicate: std::false_type
{

b

template <class E, auto... V>
struct match

{
E matched;

// Other members not specified

+;

template <class E, auto... V>

struct is_predicate<match<E, V...>>: std::true_type
{

b

template <class E, auto... V>
struct match_value

{
E matched;

// Other members not specified

+;

template <class E, auto... V>

struct is_predicate<match_value<E, V...>>: std::true_type
{

¥

template <auto, auto...>
struct match_member;

60

template <class E, class T, T E::* P, auto... \>

struct member<P, V...>

{
E matched;

// Other members not specified

+;

template <auto P, auto... V>

struct is_predicate<match_member<P, V...>>:

{
+;

template <class... Ex>
struct catch_

{

std::exception const & matched;

// Other members not specified

+;

template <class Ex>
struct catch_<Ex>

{

Ex const & matched;

// Other members not specified

+

template <class... Ex>

std

titrue_type

struct is_predicate<catch_<Ex...>>: std::true_type

{
+;

template <class Pred>
struct if_not

{
E matched;

// Other members not specified

+

template <class Pred>

struct is_predicate<if_not<Pred>>: std::true_type

{
+

template <class ErrorCodeEnum>

bool category(std::error_code const & ec) noexcept;

template <class Enum, class EnumType = Enum>
struct condition;

})

Reference: mat ch | mat ch_val ue | mat ch_nenber | cat ch

| if_not | category |

condi tion

61

Reference: Functions

(r) The contents of each Reference section are organized alphabetically.
w

acti vat e_cont ext

#include <boost/leaf/error.hpp>

namespace boost { namespace leaf {

template <class Ctx>
context_activator<Ctx> activate_context(Ctx & ctx) noexcept
{

return context_activator<Ctx>(ctx);

}
}

cont ext acti vator

Example:
leaf::context<E1, E2, E3> ctx;
{

auto active_context = activate_context(ctx); @

}@

@ Activate ct x.

@ Automatically deactivate ct x.

context type from handl ers

#include <boost/leaf/context.hpp>

namespace boost { namespace leaf {

template <class... H>
using context_type_from_handlers = typename <<unspecified>>::type;

}}

Example:

auto error_handlers = std::make_tuple(

62

[1(e_this const & a, e_that const & b)
{

h

[1(leaf::diagnostic_info const & info)

{

}I
.)

leaf::context_type_from_handlers<decltype(error_handlers)> ctx; @

@ ct x will be of type cont ext <e_t hi s, e_t hat>, deduced automatically from the specified error
handlers.

@ Alternatively, a suitable context may be created by calling nake_cont ext, or
- allocated dynamically by calling [make shared context].

current _error

#include <boost/leaf/error.hpp>
namespace boost { namespace leaf {

error_id current_error() noexcept;

}}

Returns:
The error _i d value returned the last time new_er r or was invoked from the calling thread.

3
O See alsoon_error.

exception to result

#include <boost/leaf/exception.hpp>
namespace boost { namespace leaf {

template <class... Ex, class F>
<<result<T>-deduced>> exception_to_result(F && f) noexcept;

}}

63

This function can be used to catch exceptions from a lower-level library and convert them to
resul t <T>.

Returns:

Where f returns a type T, exception_to_resul t returns| eaf:: resul t <T>.

Effects:

1. Catches all exceptions, then captures std: : current _exceptioninastd::exception_ptr
object, which is loaded with the returned r esul t <T>.

2. Attempts to convert the caught exception, using dynami c_cast, to each type Ex; in Ex... If
the cast to Ex; succeeds, the Ex; slice of the caught exception is loaded with the returned
resul t <T>.

An error handler that takes an argument of an exception type (that is, of a type
@ that derives from st d:: exception) will work correctly whether the object is
- thrown as an exception or communicated via new error (or converted using
exception_to_result).

Example:
int compute_answer_throws();

//Call compute_answer, convert exceptions to result<int>
leaf::result<int> compute_answer()

{

return leaf::exception_to_result<ex_typel, ex_type2>(compute_answer_throws());

}

At a later time we can invoke try_handl e_sone /try_handl e_al | as usual, passing handlers that
take ex_t ypel or ex_t ype2, for example by reference:

return leaf::try_handle_some(

[1 -> leaf::result<void>

{
BOOST_LEAF_AUTO(answer, compute_answer());

//Use answer
return { };
H

[1(ex_typel & ex1)
{

//Handle ex_typeT
return { };

1

64

[1(ex_type2 & ex2)

{
//Handle ex_type?

;ééarn {}

h

[1(std::exception_ptr const & p)

{ //Handle any other exception from compute_answer.
;ééﬁrn {}h

)

try handl e_sone | result | BOOST LEAF_AUTO

When a handler takes an argument of an exception type (that is, a type that
derives from std:: exception), if the object is thrown, the argument will be

A matched dynamically (using dynami c_cast); otherwise (e.g. after being converted
by exception_t o_resul t) it will be matched based on its static type only (which
is the same behavior used for types that do not derive from st d: : except i on).

(s . . .
O See also Converting Exceptions to r esul t <T> from the tutorial.
-

make cont ext

#include <boost/leaf/context.hpp>

namespace boost { namespace leaf {

template <class... H>
context_type_from_handlers<H...> make_context() noexcept
{
return { };
}
template <class... H>
context_type_from_handlers<H...> make_context(H && ...) noexcept
{
return { };
}
Pl

context type from handl ers

65

Example:

auto ctx = leaf::make_context(@
[1C e_this) { },
[1C e that) { });

M decl type(ctx) isleaf::context<e this, e_that>.

new err or

#include <boost/leaf/error.hpp>
namespace boost { namespace leaf {

template <class... Item>
error_id new_error(Item && ... item) noexcept;

}l

Requires:
Each of the | t em..types must be no-throw movable.

Effects:

As if:

error_id id = <<generate-new-unique-id>>;
return id.load(std::forward<Item>(item)...);

Returns:

A new error _i d value, which is unique across the entire program.

Ensures:

i d. val ue()! =0, wherei dis the returned error _i d.

o new_err or discards error objects which are not used in any active error handling
calling scope.

é When loaded into a cont ext, an error object of a type E will overwrite the
previously loaded object of type E, if any.

on_error

66

#include <boost/leaf/on_error.hpp>

namespace boost { namespace leaf {

template <class... Item>
<<unspecified-type>> on_error(Item && ... item) noexcept;

})

Requires:

Each of the | t em..types must be no-throw movable.

Effects:

All item.. objects are forwarded and stored, together with the value returned from
std: : unhandl ed_excepti ons, into the returned object of unspecified type, which should be
captured by aut o and kept alive in the calling scope. When that object is destroyed, if an error
has occurred since on_error was invoked, LEAF will process the stored items to obtain error
objects to be associated with the failure.

On error, LEAF first needs to deduce an err or _i d value er r to associate error objects with. This
is done using the following logic:

» If new_error was invoked (by the calling thread) since the object returned by on_error was
created, err is initialized with the value returned by current _error;

» Otherwise, if st d: : unhandl ed_except i ons returns a greater value than it returned during
initialization, er r is initialized with the value returned by new error;

* Otherwise, the stored i t em..objects are discarded and no further action is taken (no error
has occurred).

Next, LEAF proceeds similarly to:
err.load(std::forward<Item>(item)...);

The difference is that unlike | oad, on_error will not overwrite any error objects already
associated with err.

(;) See Using on_err or from the Tutorial.
-

t hr ow_excepti on

#include <boost/leaf/exception.hpp>
namespace boost { namespace leaf {

template <class Ex, class... E> @
[[noreturn]] void throw_exception(Ex && ex, E && ... e);

67

template <class E1, class... E> @
[[noreturn]] void throw_exception(E1 && e1, E && ... e);

[[noreturn]] void throw_exception(); &

template <class Ex, class... E> @
[[noreturn]] void throw_exception(error_id id, Ex && ex, E && ... e);

template <class E1, class... E> ®
[[noreturn]] void throw_exception(error_id id, E1 && e1, E && ... e);

[[noreturn]] void throw_exception(error_id id); ®

}l

The t hr ow_except i on function is overloaded: it can be invoked with no arguments, or else there
are several alternatives, selected using std::enable_if based on the type of the passed
arguments. All overloads throw an exception:

@ Selected if the first argument is not of type error _i d and is an exception object, that is, iff Ex
derives publicly from st d: : except i on. In this case the thrown exception is of unspecified type
which derives publicly from Ex and from class er r or _i d, such that:

* its Ex subobject is initialized by st d: : f or war d<Ex>(ex) ;
e itserror_i d subobject is initialized by new_error (std: : f orwar d<E>(e) ..).

@ Selected if the first argument is not of type err or _i d and is not an exception object. In this case
the thrown exception is of unspecified type which derives publicly from st d: : excepti on and
from class error _i d, such that:

e its st d: : except i on subobject is default-initialized;

o its error_id subobject 1is initialized by new error(std::forward<El>(el),
std:: forward<E>(e)..).

® If the fuction is invoked without arguments, the thrown exception is of unspecified type which
derives publicly from st d: : except i on and from class error _i d, such that:

* its st d: : excepti on subobject is default-initialized;
* itserror_i d subobject is initialized by new_error ().

@ Selected if the first argument is of type error_i d and the second argument is an exception
object, that is, iff Ex derives publicly from st d: : except i on. In this case the thrown exception is
of unspecified type which derives publicly from Ex and from class err or _i d, such that:

* its Ex subobject is initialized by st d: : f or war d<Ex>(ex) ;
e itserror_i d subobject is initialized by i d. | oad(std: : f orwar d<E>(e) ..).

® Selected if the first argument is of type error _i d and the second argument is not an exception
object. In this case the thrown exception is of unspecified type which derives publicly from
st d:: exception and from class error _i d, such that:

68

* its st d: : excepti on subobject is default-initialized;

o its error_id subobject is initialized by id.load(std::forward<El>(el),
std:: forward<E>(e)..).

® If except i on is invoked with just an error_i d object, the thrown exception is of unspecified
type which derives publicly from st d: : excepti on and from class er r or _i d, such that:
* its st d: : excepti on subobject is default-initialized;

e itserror_i d subobject is initialized by copying from i d.

The first three overloads throw an exception object that is associated with a new
error_i d. The second three overloads throw an exception object that is associated
with the specified error _i d.

Example 1:
struct my_exception: std::exception { };
leaf::throw_exception(my_exception{}); @

® Throws an exception of a type that derives from error _i d and from ny_excepti on (because
ny_excepti on derives from st d: : excepti on).

Example 2:
enum class my_error { e1=1, e2, e3 }; @
leaf::throw_exception(my_error::el);

® Throws an exception of a type that derives from error_i d and from st d: : except i on (because
ny_error does not derive from st d: : except i on).

To automatically capture _ FILE _, _ LINE__ and __ FUNCTION__ with the
returned object, use BOCST LEAF THROW EXCEPTI ON instead of
| eaf : : t hrow _exception.

to _vari ant

#include <boost/leaf/to_variant.hpp>
namespace boost { namespace leaf {

template <class... E, class TryBlock>
std::variant<
typename std::decay<decltype(std::declval<TryBlock>()().value())>::type
std::tuple<
std::optional<E>...>>
to_variant(TryBlock && try_block);

69

})

Requires:

 This function is only available under C++-17 or newer.
» Thetry_bl ock function may not take any arguments.

* The type returned by the try_block function must be a result<T> type (see
is result_type). Itisvalid for thetry_bl ock to return| eaf : : r esul t <T>, however this is
not a requirement.

The t o_vari ant function uses try_handl e_al | internally to invoke the try_bl ock and capture
the result in a std::variant. On success, the variant contains the T object from the produced
resul t <T>. Otherwise, the variant contains a std: : t upl e where each std:: opti onal element
contains an object of type E from the user-supplied sequence E.., or is empty if the failure did not
produce an error object of that type.

Example:

enum class E1 { e11, e12, e13 };
enum class E2 { e21, e22, e23 };
enum class E3 { e31, e32, e33 };

auto v = leaf::to_variant<E1, E2, E3>(
[1O) -> leaf::result<int>
{

return leaf::new error(E1::e12, E3::e33);

)

assert(v.index() == 1); @®
auto t = std::get<1>(v); @

assert(std::get<@>(t).value() == E1::e12); ®

assert(!std::get<1>(t).has_value()); @

assert(std::get<2>(t).value() == E3::e33); ®
® We report a failure, so the variant must contain the error object tuple, rather than ani nt .
@ Grab the error tuple.
® We communicated an E1 and an E3 error object...

@ ...but not an E2 error object.

try capture_all

70

#include <boost/leaf/handle_errors.hpp>
#if BOOST_LEAF_CFG_CAPTURE
namespace boost { namespace leaf {

template <class TryBlock>
result<T> // T deduced depending on TryBlock return type
try_capture_all(TryBlock && try_block) noexcept;

3}
ftendif

Return type:

An instance of | eaf : : resul t <T>, where T is deduced depending on the return type R of the
TryBl ock:

* If Ris a some type Resul t <T> for whichis_result_typeistrue,try_capture_all returns
| eaf ::resul t <T>.

» Otherwise it is assumed that the TryBl ock reports errors by throwing exceptions, and the
return value oftry_capture_al |l isdeduced asl eaf::result<R>

Effects:

try_capture_all executes try_bl ock, catching and capturing all exceptions and all
communicated error objects in the returned | eaf::result object. The error objects are
allocated dynamically.

t’ Calls to try capture_all must not be nested in try handle_ all
/try_handl e_sone/try_cat ch orin anothertry capture_all.

e Under BOOST_LEAF_CFG CAPTURE=0,try_capture_al |l isunavailable.

See also:

Transporting Errors Between Threads.

try catch

#include <boost/leaff/handle_errors.hpp>

namespace boost { namespace leaf {
template <class TryBlock, class... H>

typename std::decay<decltype(std::declval<TryBlock>()())>::type
try_catch(TryBlock && try_block, H & ... h);

71

}

The try_cat ch function works similarly to try_handl e_sone, except that it does not use or
understand the semantics of r esul t <T> types; instead:

o It assumes that the try_bl ock throws to indicate a failure, in which case try_catch will
attempt to find a suitable handler among h..;

« If a suitable handler isn’t found, the original exception is re-thrown using t hr ow; .

O See Exception Handling.

try handl e _all

#include <boost/leaf/handle_errors.hpp>
namespace boost { namespace leaf {
template <class TryBlock, class... H>

typename std::decay<decltype(std::declval<TryBlock>()().value())>::type
try_handle_all(TryBlock && try_block, H && ... h);

}}

Thetry_handl e_al | function works similarly totry_handl e_sone, except:

* In addition, it requires that at least one of h...can be used to handle any error (this requirement
is enforced at compile time);

» If the try_bl ock returns some r esul t <T> type, it must be possible to initialize a value of type
T with the value returned by each of h.., and

* Because it is required to handle all errors, try_handl e_al | unwraps the r esul t <T> object r
returned by the t ry_bl ock, returning r. val ue() instead of'r.

O See Error Handling.

try handl e sone

#include <boost/leaf/handle_errors.hpp>
namespace boost { namespace leaf {
template <class TryBlock, class... H>

typename std::decay<decltype(std::declval<TryBlock>()())>::type
try_handle_some(TryBlock && try_block, H && ... h);

72

}

Requires:

» Thetry_bl ock function may not take any arguments.

* The type R returned by the try_block function must be a result<T> type (see
is result type). Itisvalid for thetry_ bl ock toreturn| eaf: : resul t <T> however this is

not a requirement.

e Each of the h.. functions:

Effects:

o

must return a type that can be used to initialize an object of the type R, in case R is a
resul t <voi d> (that is, in case of success it does not communicate a value), handlers that
return voi d are permitted. If such a handler is selected, the try_handl e_sone return
value is initialized by { } ;

may take any error objects, by value, by (const) reference, or as pointer (to const);

may take arguments, by value, of any predicate type: catch_, match, match_val ue,
mat ch_nenber, if_not, or of any user-defined predicate type Pred for which
i s predicate<Pred>::valueistrue;

may take an error_i nf o argument by const &;

may take a di agnosti c_i nf 0 argument by const &;

may take a ver bose_di agnosti c_i nf o argument by const &

* Creates a local cont ext <E..> object ct x, where the E...types are automatically deduced from
the types of arguments taken by each of h.., which guarantees that ct x is able to store all of
the types required to handle errors.

* Invokesthetry_ bl ock:

o

o

o

if the returned object r indicates success and the try_bl ock did not throw, r is
forwarded to the caller.

otherwise, LEAF considers each of the h...handlers, in order, until it finds one that it can
supply with arguments using the error objects currently stored in ct x, associated with
r.error (). The first such handler is invoked and its return value is used to initialize the
return value of t ry_handl e_sone, which can indicate success if the handler was able to
handle the error, or failure if it was not.

iftry_handl e_some is unable to find a suitable handler, it returnsr.

t ry_handl e_son® is exception-neutral: it does not throw exceptions, however the
try_bl ock and any of h...are permitted to throw.

Handler Selection Procedure:

A handler h is suitable to handle the failure reported by r iff try_handl e_sone is able to
produce values to pass as its arguments, using the error objects currently available in ct x,
associated with the error ID obtained by calling r. error (). As soon as it is determined that an
argument value can not be produced, the current handler is dropped and the selection process
continues with the next handler, if any.

73

74

The return value of r.error() must be implicitly convertible to error_i d. Naturally, the
| eaf : : resul t template satisfies this requirement. If an external r esul t type is used instead,
usually r.error() would return a std::error_code, which is able to communicate LEAF
error IDs; see Interoperability.

If err is the error_id obtained from r.error(), each argument a; taken by the handler
currently under consideration is produced as follows:

» Ifa; isof type A, A const &or A&

o If an error object of type A, associated with err, is currently available in ctx, a is
initialized with a reference to that object; otherwise

o If A derives from st d: : exception, and the try_bl ock throws an object ex of type that
derives from st d: : excepti on, LEAF obtains A* p = dynam c_cast <A *>(&ex). The
handler is dropped if p is null, otherwise a; is initialized with * p.

o Otherwise the handler is dropped.

Example:

auto r = leaf::try_handle_some(

[1(O) -> leaf::result<int>

{
return f();

I¥

[1(leaf::e_file_name const & fn) @

{
std::cerr << "File Name: \"" << fn.value << '"' << std::endl; @
return 1;

)

result |e_file_nanme

® In case the try_bl ock indicates a failure, this handler will be selected if ct x stores an
e_fil e_name associated with the error. Because this is the only supplied handler, if an
e_file_nane is not available, try_handl e_sone will return the | eaf::result<int>
returned by f .

@ Print the file name, handle the error.

* If a; is of type A const* or A*, try_handl e_sone is always able to produce it: first it
attempts to produce it as if it is taken by reference; if that fails, rather than dropping the
handler, a; is initialized with 0.

Example:

try_handle_some(

[10) -> leaf::result<int>

{
return f();
Jis
[1(leaf::e_file_name const * fn) @
{
if(fn) @
std::cerr << "File Name: \"" << fn->value << '"' << std::endl;
return 1;
)
}

result |e file nanme

® This handler can be selected to handle any error, because it takes e_fil e_name as a
const * (and nothing else).

@Ifane_fil e_nane is available with the current error, print it.

« If a; is of a predicate type Pred (for which i s_predi cat e<Pred>: : val ue is true), E is
deduced ast ypenane Pred::error_type, and then:

o If E is not voi d, and an error object e of type E, associated with err, is not currently
stored in ct x, the handler is dropped; otherwise the handler is dropped if the expression
Pred: : eval uat e(e) returns f al se.

- if Eis voi d, and a std: : excepti on was not caught, the handler is dropped; otherwise
the handler is dropped if the expression Pred::eval uate(e), where e is of type
std:: exception const & returnsfal se.

- To invoke the handler, the Pr ed argument a; is initialized with Pr ed{ e}.

o See also: Predicates.

* Ifa; isof typeerror_info const &try_handl e_sone is always able to produce it.

Example:

try_handle_some(

[]
{

return f(); // returns leaf::result<T>
H
[1(leaf::error_info const & info) @
{

75

76

std::cerr << "leaf::error_info:" << std::endl << info; @
return info.error(); ®

})

result |error_info

® This handler matches any error.
@ Print error information.

® Return the original error, which will be returned out of t ry_handl e_sone.

» Ifa; is of type di agnostic_info const & try_handl e_sone is always able to produce it.

Example:

try_handle_some(

[]

{
return f(); // throws

}I

[1(leaf::diagnostic_info const & info) @®
{

std::cerr << "leaf::diagnostic_information:" << std::endl << info; @
return info.error(); ®

})

result | diagnostic_info

® This handler matches any error.

@ Print diagnostic information, including limited information about dropped error objects.

® Return the original error, which will be returned out of t ry_handl e_sone.

» If a; is of type verbose_di agnostic_info const & try_handl e_sone is always able to

produce it.

Example:

try_handle_some(

[]

{
return f(); // throws

}I

[1(leaf::verbose_diagnostic_info const & info) @®

{

std::cerr << "leaf::verbose_diagnostic_information:" << std::endl << info;

@

return info.error(); ®

)

result | verbose_di agnostic_info

® This handler matches any error.
@ Print verbose diagnostic information, including values of dropped error objects.

® Return the original error, which will be returned out of t ry_handl e_sone.

77

Reference: Types

(r) The contents of each Reference section are organized alphabetically.
w

cont ext

#include <boost/leaf/context.hpp>
namespace boost { namespace leaf {

template <class... E>
class context

{

context(context const &) = delete;

context & operator=(context const &) = delete;
public:

context() noexcept;

context(context && x) noexcept;

~context() noexcept;

void activate() noexcept;

void deactivate() noexcept;

bool is_active() const noexcept;

void unload(error_id) noexcept;

void print(std::ostream & os) const;

template <class R, class... H>
R handle error(error_id, H && ...) const;

+

template <class... H>
using context_type_from_handlers = typename <<unspecified>>::type;

}}

Constructors | activate | deactivate |is_active | unload | print | handl e_error

context type fromhandlers

The cont ext class template provides storage for each of the specified E...types. Typically, cont ext
objects are not used directly; they’re created internally when the try handl e_soneg,

try handle_all or try catch functions are invoked, instantiated with types that are

automatically deduced from the types of the arguments of the passed handlers.

78

Independently, users can create cont ext objects if they need to capture error objects and then
transport them, by moving the cont ext object itself.

Even in that case it is recommended that users do not instantiate the cont ext template by
explicitly listing the E... types they want it to be able to store. Instead, use
context _type_from handl ers or call the make_cont ext function template, which deduce the
correct E...types from a captured list of handler function objects.

To be able to load up error objects in a cont ext object, it must be activated. Activating a cont ext
object ct x binds it to the calling thread, setting thread-local pointers of the stored E...types to point
to the corresponding storage within ct x. It is possible, even likely, to have more than one active
cont ext in any given thread. In this case, activation/deactivation must happen in a LIFO manner.
For this reason, it is best to use a cont ext acti vator, which relies on RAII to activate and
deactivate a cont ext .

When a cont ext is deactivated, it detaches from the calling thread, restoring the thread-local
pointers to their pre-acti vat e values. Typically, at this point the stored error objects, if any, are
either discarded (by default) or moved to corresponding storage in other cont ext objects active in
the calling thread (if available), by calling unl oad.

While error handling typically usestry handl e_sone,try handle_all ortry catch, it is also
possible to handle errors by calling the member function handl e_error. It takesanerror_i d, and
attempts to select an error handler based on the error objects stored in *t hi s, associated with the
passed error _id.

(r) cont ext objects can be moved, as long as they aren’t active.
w
A Moving an active cont ext results in undefined behavior.
Constructors

#include <boost/leaf/context.hpp>
namespace boost { namespace leaf {

template <class... E>
context<E...>::context() noexcept;

template <class... E>
context<E...>::context(context && x) noexcept;

}}

The default constructor initializes an empty cont ext object: it provides storage for, but does not
contain any error objects.

The move constructor moves the stored error objects from one cont ext to the other.

79

A Moving an active cont ext object results in undefined behavior.

activate

#include <boost/leaf/context.hpp>
namespace boost { namespace leaf {

template <class... E>
void context<E...>::activate() noexcept;

}}

Requires:

lis active().

Effects:

Associates *t hi s with the calling thread.

Ensures:

is_active().

When a context is associated with a thread, thread-local pointers are set to point each E...type in its
store, while the previous value of each such pointer is preserved in the cont ext object, so that the
effect of acti vat e can be undone by calling deact i vat e.

When an error object is loaded, it is moved in the last activated (in the calling thread) cont ext
object that provides storage for its type (note that this may or may not be the last activated cont ext
object). If no such storage is available, the error object is discarded.

deacti vat e

#include <boost/leaf/context.hpp>
namespace boost { namespace leaf {

template <class... E>
void context<E...>::deactivate() noexcept;

}}

Requires:
*is_active();

* *t hi s must be the last activated cont ext object in the calling thread.

80

Effects:

Un-associates *t hi s with the calling thread.

Ensures:

lis_active().

When a context is deactivated, the thread-local pointers that currently point to each individual
error object storage in it are restored to their original value prior to calling act i vat e.

handl e_error

#include <boost/leaf/handle_errors.hpp>
namespace boost { namespace leaf {

template <class... E>
template <class R, class... H>
R context<E...>::handle _error(error_id err, H & ... h) const;

}}

This function works similarly to try_handl e_al |, but rather than calling a try_bl ock and
obtaining the error _i d from a returned resul t type, it matches error objects (stored in *t hi s,
associated with er r) with a suitable error handler from the h..pack.

9 The caller is required to specify the return type R This is because in general the
supplied handlers may return different types (which must all be convertible to R).

is_active

#include <boost/leaf/context.hpp>

namespace boost { namespace leaf {

template <class... E>
bool context<E...>::is_active() const noexcept;

}}

Returns:

true if the *t hi s is active in any thread, f al se otherwise.

81

print

#include <boost/leaf/context.hpp>

namespace boost { namespace leaf {

template <class... E>
void context<E...>::print(std::ostream & os) const;

template <class CharT, class Traits>
friend std::ostream & context<E...>::operator<<(std::basic_ostream<CharT, Traits>
&, context const &)

{
ctx.print(os);
return os;
}
}}
Effects:

Prints all error objects currently stored in *thi s, together with the unique error ID each
individual error object is associated with.

unl oad

#include <boost/leaf/context.hpp>

namespace boost { namespace leaf {

template <class... E>
void context<E...>::unload(error_id id) noexcept;

}}
Requires:
lis active().

Effects:

Each stored error object of some type E is moved into another cont ext object active in the call
stack that provides storage for objects of type E, if any, or discarded. Target objects are not
overwritten if they are associated with the specified i d, exceptifi d. val ue() ==

cont ext _acti vat or

#include <boost/leaf/error.hpp>

namespace boost { namespace leaf {

82

template <class Ctx>
class context_activator

{
context_activator(context _activator const &) = delete;
context_activator & operator=(context_activator const &) = delete;

public:
explicit context_activator(Ctx & ctx) noexcept;

context_activator(context_activator &&) noexcept;
~context_activator() noexcept;

+;
}}

cont ext _acti vat or is a simple class that activates and deactivates a cont ext using RAII:

Ifctx.is_active()istrue at the time the cont ext _acti vat or is initialized, the constructor and
the destructor have no effects. Otherwise:

e The constructor stores a reference to ct x in *t hi s and calls ct x. acti vat e().

¢ The destructor:

- Has no effectsif ct x. i s_active() isfal se (that is, it is valid to call deact i vat e manually,
before the cont ext _acti vat or object expires);

o Otherwise, calls ct x. deact i vat e().

For automatic deduction of Ct x, use acti vat e cont ext.

di agnostic_info

#include <boost/leaf/handle_errors.hpp>
namespace boost { namespace leaf {

class diagnostic_info: public error_info

{

//Constructors unspecified

template <class CharT, class Traits>
friend std::ostream & operator<<(std::basic_ostream<CharT, Traits> &,
diagnostic_info const &);

+;
}}

Handlers passed to try_handl e_sone, try_handl e_all or try_ catch may take an argument of

83

type di agnosti c_i nf o const &iftheyneed to print diagnostic information about the error.

The message printed by oper at or << includes the message printed by error _i nf o, followed by
basic information about error objects that were communicated to LEAF (to be associated with the
error) for which there was no storage available in any active cont ext (these error objects were
discarded by LEAF, because no handler needed them).

The additional information is limited to the type name of the first such error object, as well as their
total count.

The behavior of di agnostic_i nfo (and ver bose_di agnosti c_i nf 0) is affected
by the value of the macro BOOST_LEAF_CFG_DI AGNCSTI CS:

o If it is 1 (the default), LEAF produces di agnosti c_i nf o but only if an active
error handling context on the call stack takes an argument of type
e di agnosti c_i nfo;

o If it is 0, the di agnosti c_i nf o functionality is stubbed out even for error
handling contexts that take an argument of type di agnosti c_i nf o. This could
shave a few cycles off the error path in some programs (but it is probably not
worth it).

error_id
#include <boost/leaf/error.hpp>
namespace boost { namespace leaf {
class error_id
{
public:
error_id() noexcept;
template <class Enum>
result(Enum e, typename std::enable_if<std::is_error_code_enum<Enum>::value,
Enum>::type * = @) noexcept;

error_id(std::error_code const & ec) noexcept;

int value() const noexcept;
explicit operator bool() const noexcept;

std::error_code to_error_code() const noexcept;
friend bool operator==(error_id a, error_id b) noexcept;
friend bool operator!=(error_id a, error_id b) noexcept;

friend bool operator<(error_id a, error_id b) noexcept;

template <class... Item>
error_id load(Item && ... item) const noexcept;

84

template <class CharT, class Traits>
friend std::ostream & operator<<(std::basic_ostream<CharT, Traits> &, error_id);

b
bool is_error_id(std::error_code const & ec) noexcept;

template <class... E>
error_id new_error(E & ... e) noexcept;

error_id current_error() noexcept;

}

Constructors | val ue | operator bool |to_error_code | operator==,!=<|]oad |
is error_id|newerror |current_error

Values of type error _i d identify a specific occurrence of a failure across the entire program. They
can be copied, moved, assigned to, and compared to other error _i d objects. They’re as efficient as
anint.

Constructors

#include <boost/leaf/error.hpp>
namespace boost { namespace leaf {
error_id::error_id() noexcept = default;
template <class Enum>
error_id::error_id(Enum e, typename std::enable_if<std::is_error_code_enum<Enum
>::value, Enum>::type * = @) noexcept;

error_id::error_id(std::error_code const & ec) noexcept;

Pl

A default-initialized er r or _i d object does not represent a specific failure. It compares equal to any
other default-initialized err or _i d object. All other er r or _i d objects identify a specific occurrence
of a failure.

é When using an object of type error _i d to initialize a r esul t <T> object, it will be
initialized in error state, even when passing a default-initialized er r or _i d value.

Converting an error _i d object to std: : error_code uses an unspecified st d: : error_cat egory

which LEAF recognizes. This allows an error_i d to be transported through interfaces that work
with std::error_code. The std::error_code constructor allows the original error_id to be

85

restored.

7 To check if a given std::error_code is actually carrying an error_id, use
- is error_id.

Typically, users create new error _i d objects by invoking new_err or. The constructor that takes
std::error_code, and the one that takes a type Enum for which
std::is_error_code_enunkEnun®: : val ue istrue, have the following effects:

» Ifec. val ue() is 0, the effect is the same as using the default constructor.
* Otherwise, ifi s_error_id(ec) istrue, the original error _i d value is used to initialize *t hi s;

* Otherwise, *t hi s is initialized by the value returned by new_err or, while ec is passed to | oad,
which enables handlers used with try_handl e_some, try handle_all or try catch to
receive it as an argument of type st d: : error _code.

is error_id

#include <boost/leaf/error.hpp>
namespace boost { namespace leaf {

bool is_error_id(std::error_code const & ec) noexcept;

P

Returns:

true if ec uses the LEAF-specific std: : error _cat egory that identifies it as carrying an error
ID rather than another error code; otherwise returns f al se.

| oad

#include <boost/leaf/error.hpp>
namespace boost { namespace leaf {

template <class... Item>
error_id error_id::load(Item && ... item) const noexcept;

}}

Requires:

Each of the | t em..types must be no-throw movable.

Effects:

o Ift hi s->val ue()==0, all of i t em..are discarded and no further action is taken.

86

* Otherwise, what happens with each i t emdepends on its type:

o If it is a function that takes a single argument of some type E &, that function is called
with the object of type E currently associated with *t hi s. If no such object exists, a
default-initialized object is associated with *t hi s and then passed to the function.

o If it is a function that takes no arguments, that function is called to obtain an error object
which is associated with *t hi s, except in the special case of a voi d function, in which
case it is invoked and no error object is obtained/loaded.

o Otherwise, the it emitself is assumed to be an error object, which is associated with

*t his.
Returns:
*t his.
0 | oad discards error objects which are not used in any active error handling calling
scope.
o When loaded into a context, an error object of a type E will overwrite the
previously loaded object of type E, if any.
See also:

Loading of Error Objects.

operator==,!=,<
#include <boost/leaf/error.hpp>
namespace boost { namespace leaf {
friend bool operator==(error_id a, error_id b) noexcept;

friend bool operator!=(error_id a, error_id b) noexcept;
friend bool operator<(error_id a, error_id b) noexcept;

})

These functions have the usual semantics, comparing a. val ue() and b. val ue().

The exact strict weak ordering implemented by oper at or < is not specified. In
particular, if for two error_i d objects a and b, a < b is true, it does not follow
that the failure identified by a ocurred earlier than the one identified by b.

oper at or bool

87

#include <boost/leaf/error.hpp>
namespace boost { namespace leaf {
explicit error_id::operator bool() const noexcept;

}}

Effects:

Asifreturn val ue()!=0.

to_error_code

#include <boost/leaf/error.hpp>
namespace boost { namespace leaf {
std::error_code error_id::to_error_code() const noexcept;

}

Effects:

Returns a std::error_code with the same value() as *this, using an unspecified
std::error_category.

9 The returned object can be used to initialize an error_i d, in which case the
original err or _i d value will be restored.
(s
O Useis_error_idtocheckifagivenstd::error_code carriesanerror_id.
w
val ue

#include <boost/leaf/error.hpp>
namespace boost { namespace leaf {
int error_id::value() const noexcept;

}}

Effects:

» If*t hi s was initialized using the default constructor, returns 0.

» Otherwise returns ani nt that is guaranteed to not be 0: a program-wide unique identifier of
the failure.

88

error_nonitor

#include <boost/leaf/on_error.hpp>
namespace boost { namespace leaf {

class error_monitor

{
public:

error_monitor() noexcept;
error_id check() const noexcept;

error_id assigned_error_id(E & ... e) const noexcept;

+;
}}

This class helps obtain an error_id to associate error objects with, when augmenting failures
communicated using LEAF through uncooperative APIs that do not use LEAF to report errors (and
therefore do not return an er r or _i d on error).

The common usage of this class is as follows:

error_code compute_value(int * out_value) noexcept; @

leaf::error<int> augmenter() noexcept

{

leaf::error_monitor cur_err; @

int val;
auto ec = compute_value(&val);

if(failure(ec))

return cur_err.assigned_error_id().load(el, €2, ...); ®
else

return val; @

® Uncooperative third-party API that does not use LEAF, but may result in calling a user callback
that does use LEAF. In case our callback reports a failure, we’ll augment it with error objects
available in the calling scope, even though conput e_val ue can not communicate an error _i d.

@ Initialize an er r or _noni t or object.
® The call to conput e_val ue has failed:

» If new _error was invoked (by the calling thread) after the augment object was initialized,

89

assi gned_error_id returns the last error _i d returned by new_error. This would be the
case if the failure originates in our callback (invoked internally by conput e_val ue).

» Else, assi gned_error_i dinvokes new_error and returns that error _i d.
@ The call was successful, return the computed value.

The check function works similarly, but instead of invoking new_error it returns a default-
initialized error _i d.

(;) See Using err or _noni t or to Report Arbitrary Errors from C-callbacks.
-

e_api _function

#include <boost/leaf/common.hpp>
namespace boost { namespace leaf {

struct e_api_function {char const * value;};

}}

The e_api _functi on type is designed to capture the name of the API function that failed. For
example, if you’re reporting an error from fread, you could use |eaf::e_api_function
{"fread"}.

ﬁ The passed value is stored as a C string (char const *), so val ue should only be
initialized with a string literal.

e _at _|ine
#include <boost/leaf/common.hpp>
namespace boost { namespace leaf {
struct e_at_line { int value; };

}}

e_at _| i ne can be used to communicate the line number when reporting errors (for example parse
errors) about a text file.

e_errno

90

#include <boost/leaf/common.hpp>
namespace boost { namespace leaf {

struct e_errno

{
int value;
explicit e_errno(int value=errno);

template <class CharT, class Traits>
friend std::ostream & operator<<(std::basic_ostream<CharT, Traits> &, e_errno
const &);

+
)

By default, the constructor initializes val ue with errno, but the caller can pass a specific error
code instead. When printed in automatically-generated diagnostic messages, e_errno objects use

strerror to convert the error code to string.

e file_nane
#include <boost/leaf/common.hpp>
namespace boost { namespace leaf {

struct e_file_name { std::string value; };

}}

When a file operation fails, you could use e_f i | e_nare to store the name of the file.

It is probably better to define your own file name wrappers to avoid clashes if

different modules all use | eaf : : e_fi | e_nane. It is best to use a descriptive name
@ that clarifies what kind of file name it is (e.g. e_source_fil e_nane,
e_destination_file_nane), or at least define e_fi | e_nane in a given module’s
namespace.

e LastError

#include <boost/leaf/common.hpp>
namespace boost { namespace leaf {

namespace windows

{

91

struct e LastError

{

unsigned value;
explicit e_LastError(unsigned value);

#if BOOST_LEAF_CFG_WIN32
e _LastError();

template <class CharT, class Traits>
friend std::ostream & operator<<(std::basic_ostream<CharT, Traits> &,

e _LastError const &);
#endif
s
}

}}

e_LastError is designed to communicate Get LastError() values on Windows. The default
constructor initializes val ue via Get Last Err or () . See Configuration.

e_source_| ocation

#include <boost/leaf/error.hpp>
namespace boost { namespace leaf {

struct e source_location

{

char const * file;
int line;
char const * function;

template <class CharT, class Traits>
friend std::ostream & operator<<(std::basic_ostream<CharT, Traits> &,
e source_location const &);

+;
}}

The BOOST LEAF NEW ERROR and BOOST_ LEAF_THROW EXCEPTI ON macros capture __ FILE
__LINE__and __FUNCTI ON__into a e_sour ce_| ocat i on object.

e _type_info_nane

92

#include <boost/leaf/common.hpp>
namespace boost { namespace leaf {
struct e_type_info_name { char const * value; };

}}

e_type_i nf o_nane is designed to store the return value of st d: : t ype_i nf o: : nane.

error_info
#include <boost/leaff/handle_errors.hpp>
namespace boost { namespace leaf {
class error_info
{
//Constructors unspecified
public:

error_id error() const noexcept;

bool exception_caught() const noexcept;
std::exception const * exception() const noexcept;

template <class CharT, class Traits>
friend std::ostream & operator<<(std::basic_ostream<CharT, Traits> &, error_info
const &);

b
}}
Handlers passed to error handling functions such as try_handl e_sone, try handle_all or

try catch may take an argument of type error _i nfo const & to receive generic information
about the error being handled.

The er r or member function returns the program-wide unique error _i d of the error.

The except i on_caught member function returns t r ue if the handler that received *t hi s is being
invoked to handle an exception, f al se otherwise.

If handling an exception, the exception member function returns a pointer to the
st d: : excepti on subobject of the caught exception, or 0 if that exception could not be converted to
std::exception.

A It is illegal to call the except i on member function unless excepti on_caught () is

93

true.

The oper at or << overload prints diagnostic information about each error object currently stored in
the cont ext local to the try_handl e_sone, try_handle_all or try_catch scope that invoked
the handler, but only if it is associated with the err or _i d returned by error ().

resul t

#include <boost/leaf/result.hpp>
namespace boost { namespace leaf {

template <class T>
class result
{
public:
using value_type = T;

// NOTE: Copy constructor implicitly deleted.
result(result & r) noexcept;

template <class U, class = typename std::enable_if<std::is_convertible<U, T>
r:value>::type>

result(result<U> && r) noexcept;

result() noexcept;

result(T & v) noexcept;

result(T const & v);

result(error_id err) noexcept;

template <class U, class = typename std::enable_if<std::is_convertible<U, T>
r:value>::type>

result(U & u);
#if BOOST_LEAF_CFG_STD_SYSTEM_ERROR

result(std::error_code const & ec) noexcept;

template <class Enum, class = typename std::enable_if<std::is_error_code_enum<
Enum>::value, int>::type>

result(Enum e) noexcept;

#endif

// NOTE: Assignment operator implicitly deleted.

94

result & operator=(result && r) noexcept;

template <class U, class = typename std::enable_if<std::is_convertible<U, T>
t:value>::type>
result & operator=(result<U> && r) noexcept;

bool has_value() const noexcept;
bool has_error() const noexcept;
explicit operator bool() const noexcept;

const & value() const §&;

& value() &;

const && value() const &&;
&& value() &&;

— - = —

T const * operator->() const noexcept;
T * operator->() noexcept;

const & operator*() const & noexcept;

& operator*() & noexcept;

const && operator*() const &% noexcept;
&& operator*() && noexcept;

— - - —

<<unspecified-type>> error() noexcept;

template <class... Item>
error_id load(Item && ... item) noexcept;

void unload();
template <class CharT, class Traits>
friend std::ostream & operator<<(std::basic_ostream<CharT, Traits> &, result

const &);

+;

template <>

class result<void>
{

public:

using value_type = void;

// NOTE: Copy constructor implicitly deleted.
result(result && r) noexcept;

result() noexcept;
result(error_id err) noexcept;

#if BOOST_LEAF_CFG_STD_SYSTEM_ERROR

95

result(std::error_code const & ec) noexcept;

template <class Enum, typename std::enable_if<std::is_error_code_enum<Enum>::
value, Enum>::type>

result(Enum e) noexcept;

#endif

// NOTE: Assignment operator implicitly deleted.
result & operator=(result && r) noexcept;

explicit operator bool() const noexcept;
void value() const;

void const * operator->() const noexcept;
void * operator->() noexcept;

void operator*() const noexcept;
<<unspecified-type>> error() noexcept;

template <class... Item>
error_id load(Item && ... item) noexcept;

void unload();

template <class CharT, class Traits>
friend std::ostream & operator<<(std::basic_ostream<CharT, Traits> &, result
const &);

};
struct bad_result: std::exception { };

template <class T>
struct is_result_type<result<T>>: std::true_type

{
+;

}}

Constructors | operator= | has_val ue | has_error | operator bool |value | operator-> |
operator* | error || oad

The resul t <T> type can be returned by functions which produce a value of type T but may fail
doing so.

Requires:

T must be movable, and its move constructor may not throw.

96

Invariant:

Aresul t <T>object is in one of three states:

 Value state, in which case it contains an object of type T, and val ue / oper at or * / oper at or -
> can be used to access the contained value.

* Error state, in which case it contains an error ID, and calling val ue throws
| eaf:: bad_result.

* Dynamic capture state, which is the same as the Error state, but in addition to the error ID, it
holds a list of dynamically captured error objects; seetry_capture_all.

resul t <T> objects are nothrow-moveable but are not copyable.

Constructors

#include <boost/leaf/result.hpp>
namespace boost { namespace leaf {
// NOTE: Copy constructor implicitly deleted.

template <class T>
result<T>::result(result && r) noexcept;

template <class T>

template <class U, class = typename std::enable_if<std::is_convertible<U, T>
1ivalue>::type>

result<T>::result(result<U> && r) noexcept;

template <class T>
result<T>::result() noexcept;

template <class T>
result<T>::result(T && v) noexcept;

template <class T>
result<T>::result(T const & v);

template <class T>
result<T>::result(error_id err) noexcept;

template <class T>

template <class U, class = typename std::enable_if<std::is_convertible<U, T>
1ivalue>::type>

result<T>::result(U && u);
#if BOOST_LEAF_CFG_STD_SYSTEM_ERROR

template <class T>

97

result<T>::result(std::error_code const & ec) noexcept;

template <class T>

template <class Enum, class = typename std::enable_if<std::is_error_code_enum<
Enum>::value, int>::type>

result<T>::result(Enum e) noexcept;

#endif

}}

Requires:

T must be movable, and its move constructor may not throw; or voi d.

Effects:

Establishes the r esul t <T> invariants:
* To get a resul t <T> in Value state, initialize it with an object of type T or use the default
constructor.
* To get aresul t <T>in Error state, initialize it with:

o anerror_id object.

é Initializing a r esul t <T> with a default-initialized error _i d object (for
which . val ue() returns 0) will still result in Error state!

o astd::error_code object.

> an object of type Enumfor which st d: : i s_error_code_enun<Enun®: : val ue ist r ue.

» To getaresul t <T>in dynamic capture state, calltry_capture_all.

When a resul t object is initialized with a std:: error_code object, it is used to initialize an
er ror _i d object, then the behavior is the same as if initialized with err or _i d.

Throws:

* Initializing the r esul t <T> in Value state may throw, depending on which constructor of T is
invoked;

e Other constructors do not throw.

7 Aresul t thatis in value state converts to t r ue in boolean contexts. Aresul t that
- is not in value state converts to f al se in boolean contexts.
e resul t <T> objects are nothrow-moveable but are not copyable.
error

98

#include <boost/leaf/result.hpp>
namespace boost { namespace leaf {

template <class... E>
<<unspecified-type>> result<T>::error() noexcept;

})

Returns: A proxy object of unspecified type, implicitly convertible to any instance of the resul t
class template, as well asto error _i d.
* If the proxy object is converted to some r esul t <U>:
o If*t hi s is in Value state, returnsresul t <U>(error _i d()).
- Otherwise the state of *t hi s is moved into the returned r esul t <U>.
* If the proxy object is converted to an error _i d:
o If *t hi s is in Value state, returns a default-initialized err or _i d object.

o If *t hi s is in Error capture state, all captured error objects are loaded in the calling thread,
and the captured error _i d value is returned.

o If *t hi s is in Error state, returns the stored error _i d.

« If the proxy object is not used, the state of *t hi s is not modified.

A The returned proxy object refers to *t hi s; avoid holding on to it.

| oad

#include <boost/leaf/result.hpp>
namespace boost { namespace leaf {

template <class T>
template <class... Item>
error_id result<T>::load(Item && ... item) noexcept;

}}

This member function is designed for use in r et ur n statements in functions that return r esul t <T>
to forward additional error objects to the caller.

Effects:
Asiferror_id(this->error()).load(std::forward<ltenr(iten).).

Returns:
*this.

99

oper at or =

#include <boost/leaf/result.hpp>
namespace boost { namespace leaf {

template <class T>
result<T> & result<T>::operator=(result &&) noexcept;

template <class T>

template <class U>
result<T> & result<T>::operator=(result<U> &&) noexcept;

}}

Effects:
Destroys *t hi s, then re-initializes it as if using the appropriate r esul t <T> constructor. Basic

exception-safety guarantee.

has_val ue

#include <boost/leaf/result.hpp>
namespace boost { namespace leaf {

template <class T>
bool result<T>::has_value() const noexcept;

}

Returns:
If *t hi s is in value state, returnst r ue, otherwise returns f al se.

has_error

#include <boost/leaf/result.hpp>
namespace boost { namespace leaf {

template <class T>
bool result<T>::has_error() const noexcept;

P

100

Returns:

If *t hi s is in value state, returns f al se, otherwise returnstr ue.

oper at or bool

#include <boost/leaf/result.hpp>
namespace boost { namespace leaf {

template <class T>
result<T>::operator bool() const noexcept;

}}

Returns:

If *t hi s is in value state, returnst r ue, otherwise returns f al se.

val ue

#include <boost/leaf/result.hpp>
namespace boost { namespace leaf {
void result<void>::value() const;

template <class T>
T const & result<T>::value() const;

template <class T>
T & result<T>::value();

struct bad_result: std::exception { };

}}

Effects:

e If *t hi s is in value state, returns a reference to the stored value.

* If*t hi s is in dynamic capture state, the captured error objects are unloaded, and:

o If *this contains a captured exception object ex, the behavior is equivalent to
t hr ow excepti on(ex).

o Otherwise, the behavior is equivalent to t hr ow_excepti on(bad_resul t{}).

* If*t hi s is in any other state, the behavior is equivalent to t hr ow _excepti on(bad_resul t{}).

101

val ue_type

A member type of r esul t <T>, defined as a synonim for T.

Effects:

If *t hi s is in value state, returns a reference to the stored value, otherwise throws bad_resul t.

operator->

#include <boost/leaf/result.hpp>

namespace boost { namespace leaf {

template <class T>
T const * result<T>::operator->() const noexcept;

template <class T>
T * result<T>::operator->() noexcept;

}}

Returns

If *t hi s is in value state, returns a pointer to the stored value; otherwise returns 0.

operator*

#include <boost/leaf/result.hpp>

namespace boost { namespace leaf {

template <class T>
T const & result<T>::operator*() const noexcept;

template <class T>
T & result<T>::operator*() noexcept;

})

Requires:

*t hi s must be in value state.

Returns

a reference to the stored value.

102

ver bose _di agnostic_info

#include <boost/leaf/handle_errors.hpp>
namespace boost { namespace leaf {

class verbose_diagnostic_info: public error_info

{

//Constructors unspecified

template <class CharT, class Traits>
friend std::ostream & operator<<(std::basic_ostream<CharT, Traits> &,
verbose_diagnostic_info const &);

+
}}

Handlers passed to error handling functions such as try_handl e_sone, try handle_all or
try catch may take an argument of type ver bose_di agnostic_i nfo const & if they need to
print diagnostic information about the error.

The message printed by oper at or << includes the message printed by err or _i nf o, followed by
information about error objects that were communicated to LEAF (to be associated with the error)
for which there was no storage available in any active cont ext (these error objects were discarded
by LEAF, because no handler needed them).

The additional information includes the types and the values of all such error objects.

The behavior of ver bose_di agnosti c_i nfo (and di agnosti c_i nf 0) is affected
by the value of the macro BOOST_LEAF_CFG_DI AGNCSTI CS:

o If it is 1 (the default), LEAF produces ver bose_di agnosti c_i nf o but only if
an active error handling context on the call stack takes an argument of type
9 ver bose_di agnostic_i nfo;

o Ifitis 0, the ver bose_di agnosti c_i nf o functionality is stubbed out even for
error handling contexts that take an argument of type
ver bose_di agnosti c_i nf o. This could save some cycles on the error path in
some programs (but is probably not worth it).

g Using ver bose_di agnosti c_i nf o may allocate memory dynamically, but only if
an active error handler takes an argument of type ver bose_di agnosti c_i nf o.

103

Reference: Predicates

(r) The contents of each Reference section are organized alphabetically.
w
A predicate is a special type of error handler argument which enables the handler selection
procedure to consider the value of available error objects, not only their type; see Using Predicates
to Handle Errors.

The following predicates are available:

e match
e match val ue

* mat ch_nenber

e catch

e i f not

In addition, any user-defined type Pr ed for which i s_pr edi cat e<Pr ed>: : val ue ist r ue is treated
as a predicate. In this case, it is required that:

* Pred defines an accessible member type error_type to specify the error object type it
requires;
* Pred defines an accessible static member function eval uat e, which returns a boolean type,

and can be invoked with an object of type error _type const &

* A Pred instance can be initialized with an object of type error _t ype.

When an error handler takes an argument of a predicate type Pred, the handler selection
procedure drops the handler if an error object e of type Pred::error_type is not available.
Otherwise, the handler is dropped if Pr ed: : eval uat e(e) returns f al se. If the handler is invoked,
the Pr ed argument is initialized with Pr ed{ e}.

Predicates are evaluated before the error handler is invoked, and so they may not
o access dynamic state (of course the error handler itself can access dynamic state,
e.g. by means of lambda expression captures).

Example 1:
enum class my_error { el =1, e2, e3 };
struct my_pred
{
using error_type = my_error; @

static bool evaluate(my_error) noexcept; @

my_error matched; ®

}

104

namespace boost { namespace leaf {

template <>

struct is_predicate<my_pred>: std::true_type
{

¥

}}

® This predicate requires an error object of type ny_error.

@ The handler selection procedure will call this function with an object e of type ny_error to
evaluate the predicate...

® ...and if successful, initialize the ny_pr ed error handler argument with ny_pr ed{ e}.

Example 2:
struct my_pred
{
using error_type = leaf::e_errno; @

static bool evaluate(leaf::e_errno const &) noexcept; @

leaf::e_errno const & matched; ®

}
namespace boost { namespace leaf {

template <>
struct is_predicate<my_pred>: std::true_type
{
b
}}

® This predicate requires an error object of type e_er r no.

@ The handler selection procedure will call this function with an object e of type e_errno to
evaluate the predicate...

® ...and if successful, initialize the ny_pr ed error handler argument with ny_pr ed{ e}.

catch_

#include <boost/leaf/pred.hpp>
namespace boost { namespace leaf {

template <class... Ex>

105

struct catch_

{

std::exception const & matched;

// Other members not specified

+

template <class Ex>
struct catch_<Ex>

{

Ex const & matched;

// Other members not specified

+;

template <class... Ex>
struct is_predicate<catch_<Ex...>>: std::true_type

{
+;

}}

is predicate

When an error handler takes an argument of type that is an instance of the cat ch_ template, the
handler selection procedure first checks if a std:: excepti on was caught. If not, the handler is
dropped. Otherwise, the handler is dropped if the caught std::exception can not be
dynam c_cast to any of the specified types Ex...

If the error handler is invoked, the mat ched member can be used to access the exception object.

o See also: Using Predicates to Handle Errors.

While cat ch_ requires that the caught exception object is of type that derives
(2
O from std::exception, it is not required that the Ex...types derive from
w

std: :exception.

Example 1:

struct ex1: std::exception { };
struct ex2: std::exception { };

leaf::try_catch(

[]

{
return f(); // throws

}

[1(leaf::catch_<ex1, ex2> c)

106

{®

assert(dynamic_cast<ex1 const *>(&c.matched) || dynmamic_cast<ex2 const *>(&c
.matched));

ST
® The handler is selected if f throws an exception of type ex1 or ex2.
Example 2:
struct ex1: std::exception { };

leaf::try_handle_some(

[]
{

return f(); // returns leaf::result<T>

}I

[T(ex1 & e)
{®

})

® The handler is selected if f throws an exception of type ex1. Notice that if we’re interested in
only one exception type, as long as that type derives from st d: : excepti on, the use of cat ch_ is
not required.

| f _not

#include <boost/leaf/pred.hpp>
namespace boost { namespace leaf {

template <class P>
struct if_not

{

<<deduced>> matched;

// Other members not specified

+;

template <class P>
struct is_predicate<if_not<P>>: std::true_type

{
+;

}}

107

is predicate

When an error handler takes an argument of type i f _not <P>, where P is another predicate type,
the handler selection procedure first checks if an error object of the type E required by P is
available. If not, the handler is dropped. Otherwise, the handler is dropped if P evaluates to t r ue.

If the error handler is invoked, mat ched can be used to access the matched object E.

0 See also Using Predicates to Handle Errors.
Example:
enum class my_enum { e1, e2, e3 };

leaf::try_handle_some(

[]
{
return f(); // returns leaf::result<T>

h

[1(leaf::if_not<leaf::match<my_enum, my_enum::e1, my_enum::e2>>)

{®

})

try_handl e_sone | mat ch

® The handler is selected if an object of type ny_enum which does not compare equal to el or to
e2, is associated with the detected error.

mat ch

#include <boost/leaf/pred.hpp>
namespace boost { namespace leaf {

template <class E, auto... V>
class match

{

<<deduced>> matched;

// Other members not specified

+;

template <class E, auto... V>
struct is_predicate<match<E, V...>>: std::true_type

{
+;

108

})

is predicate

When an error handler takes an argument of type mat ch<E, V..>, the handler selection procedure
first checks if an error object e of type E is available. If it is not available, the handler is dropped.
Otherwise, the handler is dropped if the following condition is not met:

P [P2 [| ...pn
Where p; is equivalent to e == V, except if V; is pointer to a function
bool (*Vi)(T x).

In this case it is required that Vi ! = 0 and that x can be initialized with E const &, and then p; is
equivalent to:

Vi(e).

In particular, it is valid to pass pointer to the function | eaf : : cat egor y<Enun® for any Vi, where:

std::is_error_code_enun<Enune: :val ue ||
std::is_error_condition_enun<Enunp::val ue.

In this case, p; is equivalent to:
&e. category() == &std::error_code(Enun{}).category().

If the error handler is invoked, nat ched can be used to access e.

0 See also Using Predicates to Handle Errors.
Example 1: Handling of a subset of enum values.
enum class my_enum { el, e2, e3 };

leaf::try_handle_some(

[]
{

return f(); // returns leaf::result<T>

}l

[](leaf::match<my_enum, my_enum::e1, my_enum::e2> m)

{®
static_assert(std::is_same<my_enum, decltype(m.matched)>::value);
assert(m.matched == my_enum::e1 || m.matched == my_enum::e2);

)

109

® The handler is selected if an object of type my_enum which compares equal to el or to e2, is
associated with the detected error.

Example 2: Handling of a subset of std::error_code enum values (requires at least C++17, see Example 4 for
a C++11-compatible workaround).

enum class my_enum { e1=1, e2, e3 };

namespace std

{

template <> struct is_error_code_enum<my_enum>: std::true_type { };

}

leaf::try_handle_some(

[]
{

return f(); // returns leaf::result<T>

}

[1(leaf::match<std::error_code, my_enum::e1, my_enum::e2> m)

{®

static_assert(std::is_same<std::error_code const &, decltype(m.matched)>::value);
assert(m.matched == my_enum::el1 || m.matched == my_enum::e2);

)

@® The handler is selected if an object of type st d: : err or _code, which compares equal to el or to
e2, is associated with the detected error.

Example 3: Handling of a specific std::error_code::category (requires at least C++17).

enum class enum_a { al=1, a2, a3
enum class enum_b { b1=1, b2, b3

namespace std

{

template <> struct is_error_code_enum<enum_a>: std::true_type { };
template <> struct is_error_code_enum<enum_b>: std::true_type { };

}

leaf::try_handle_some(

[]
{

return f(); // returns leaf::result<T>

}I

[](leaf::match<std::error_code, leaf::category<enum_a>, enum_b::b2> m)

{®

static_assert(std::is_same<std::error_code const &, decltype(m.matched)>::value);

110

assert(&m.matched.category() == &std::error_code(enum_{}).category() || m.matched
== enum_b::b2);

)

® The handler is selected if an object of type std::error_code, which either has the same
std::error_category as that of enum a or compares equal to enum b: : b2, is associated with
the detected error.

The use of the | eaf: : cat egory template requires automatic deduction of the type of each V,
which in turn requires C++17 or newer. The same applies to the use of std: : error _code as E, but
LEAF provides a compatible C++11 workaround for this case, using the template condi ti on. The
following is equivalent to Example 2:

Example 4: Handling of a subset of std::error_code enum values using the C++11-compatible API.
enum class my_enum { e1=1, e2, e3 };

namespace std

{

template <> struct is_error_code_enum<my_enum>: std::true_type { };

}

leaf::try_handle_some(

[]
{

return f(); // returns leaf::result<T>

h

[1(leaf::match<leaf::condition<my_enum>, my_enum::el1, my_enum::e2> m)

{

static_assert(std::is_same<std::error_code const &, decltype(m.matched)>::value);
assert(m.matched == my_enum::e1 || m.matched == my_enum::e2);

})

Instead of a set of values, the mat ch template can be given pointers to functions that implement a
custom comparison. In the following example, we define a handler which will be selected to handle
any error that communicates an object of the user-defined type severi ty with value greater than
4:

Example 5: Handling of failures with severity::value greater than a specified threshold (requires at least
C++17).

struct severity { int value; }
template <int S>

constexpr bool severity_greater_than(severity const & e) noexcept

{

111

return e.value > S;

}

leaf::try_handle_some(

[]
{

return f(); // returns leaf::result<T>

}l

[](leaf::match<severity, severity_greater_than<4>> m)

{
static_assert(std::is_same<severity const &, decltype(m.matched)>::value);
assert(m.matched.value > 4);

)

mat ch_menber

#include <boost/leaf/pred.hpp>
namespace boost { namespace leaf {

template <auto, auto... V>
struct match_member;

template <class E, class T, T E::* P, auto... \>
struct match_member<P, V...>

{

E const & matched;

// Other members not specified

+

template <auto P, auto... V>

struct is_predicate<match_member<P, V...>>: std::true_type
{

s

}}

is predicate

This predicate is similar to mat ch_val ue, but able to bind any accessible data member of E; e.g.
mat ch_nenber <&E: : val ue, V..»>isequivalent to mat ch_val ue<E, V..>.

0 See also Using Predicates to Handle Errors.

112

A mat ch_nmenber requires at least C++17, whereas mat ch_val ue does not.

mat ch_val ue

#include <boost/leaf/pred.hpp>
namespace boost { namespace leaf {

template <class E, auto... V>
struct match_value

{

E const & matched;

// Other members not specified

+;

template <class E, auto... V>
struct is_predicate<match_value<E, V...>>: std::true_type

{
+;
}}

is predicate

This predicate is similar to mat ch, but where mat ch compares the available error object e of type E
to the specified values V.., mat ch_val ue works with e. val ue.

0 See also Using Predicates to Handle Errors.
Example:
struct e_errno { int value; }

leaf::try_handle_some(

[]
{

return f(); // returns leaf::result<T>

+
[1(C leaf::match_value<e errno, ENOENT> m)
{®

static_assert(std::is_same<e_errno const &, decltype(m.matched)>::value);
assert(m.matched.value == ENOQENT);

)

113

® The handler is selected if an object of type e_er r no, with . val ue equal to ENOENT, is associated
with the detected error.

114

Reference: Traits

(r) The contents of each Reference section are organized alphabetically.
w

| S _predicate

#include <boost/leaf/pred.hpp>>
namespace boost { namespace leaf {

template <class T>

struct is_predicate: std::false_type
{

}i

}}

The i s_predi cat e template is used by the handler selection procedure to detect predicate types.
See Using Predicates to Handle Errors.

IS result _type

#include <boost/leaf/error.hpp>>
namespace boost { namespace leaf {

template <class R>
struct is_result_type: std::false_type

{
+;

}}
The error handling functionality provided by t ry_handl e_sone andtry_handl e_al | —including

the ability to load error objects of arbitrary types —is compatible with any external r esul t <T>
type R, as long as for a given object r of type R:

e If bool (r) istrue,r indicates success, in which case it is valid to call r . val ue() to recover the
T value.

e Otherwise r indicates a failure, in which case it is valid to call r. er r or () . The returned value is
used to initialize an error _i d (note: error _i d can be initialized by st d: : error _code).

To use an external r esul t <T> type R, you must specialize the i s_resul t _t ype template so that
is result_type<R>::val ue evaluatestotrue.

Naturally, the provided | eaf : : r esul t <T> class template satisfies these requirements. In addition,

115

it allows error objects to be transported across thread boundaries, usingatry capture all.

116

Reference: Macros

(r) The contents of each Reference section are organized alphabetically.
w

BOOST _LEAF_ASSI GN

#include <boost/leaf/error.hpp>

#define BOOST_LEAF_ASSIGN(v, r)\
auto && <<temp>> = r;\
if(I<<temp>>)\
return <<temp>>.error();\
v = std::forward<decltype(<<temp>>)>(<<temp>>).value()

BOOST_LEAF_ASSI GN is useful when calling a function that returns result <T> (other than
resul t <voi d>), if the desired behavior is to forward any errors to the caller verbatim.

In case of success, the result val ue() of type T is assigned to the specified variable v, which must
have been declared prior to invoking BOOST_LEAF_ASSI GN. However, it is possible to use
BOOST_LEAF_ASSI GN to declare a new variable, by passing in v its type together with its name, e.g.
BOOST_LEAF_ASSI G\N(auto && x, f()) calls f, forwards errors to the caller, while capturing
successful values in x.

o See also BOOST LEAF _AUTO.

BOOST LEAF AUTO

#include <boost/leaf/error.hpp>

#define BOOST_LEAF_AUTO(v, r)\
BOOST_LEAF_ASSIGN(auto v, r)

BOOST_LEAF_ASSI GN

BOOST_LEAF_AUTO is useful when calling a function that returns result<T> (other than
resul t <voi d>), if the desired behavior is to forward any errors to the caller verbatim.

Example:
leaf::result<int> compute_value();
leaf::result<float> add_values()

{
BOOST_LEAF_AUTO(v1, compute_value()); @

BOOST_LEAF_AUTO(v2, compute_value()); @

117

return vl + v2;

}

@ Call conput e_val ue, bail out on failure, define a local variable v1 on success.

@ Call conput e_val ue again, bail out on failure, define a local variable v2 on success.

Of course, we could write add_val ue without using BOOST_LEAF_AUTO. This is equivalent:

leaf::result<float> add values()

{
auto v1 = compute_value();
if(vl)
return vl.error();
auto v2 = compute_value();
if(1v2)
return v2.error();
return v1.value() + v2.value();
}

0 See also BOOST LEAF ASSI G\

BOOST LEAF CHECK

#include <boost/leaf/error.hpp>
#if BOOST_LEAF_CFG_GNUC_STMTEXPR

#define BOOST_LEAF_CHECK(r)\
(f\
auto && <<temp>> = (r);\
if(I<<temp>>)\
return <<temp>>.error();\
std: :move(<<temp>>);\
}).value()

flelse

#define BOOST_LEAF_CHECK(r)\
{\
auto && <<temp>> = (r);\
if(I<<temp>>)\
return <<temp>>.error();\

118

#endif

BOOST_LEAF_CHECK is useful when calling a function that returns r esul t <voi d>, if the desired
behavior is to forward any errors to the caller verbatim.

Example:
leaf::result<void> send_message(char const * msg);
leaf::result<int> compute_value();

leaf::result<int> say_hello_and_compute_value()

{
BOOST_LEAF_CHECK(send_message("Hello!")); @

return compute_value();

}

® Try to send a message, then compute a value, report errors using BOOST_LEAF_CHECK.

Equivalent implementation without BOOST _LEAF_CHECK:

leaf::result<float> add _values()

{

auto r = send_message("Hello!");
if(Ir)
return r.error();

return compute_value();

}

If BOOST LEAF CFG GNUC STMIEXPR is 1 (which is the default under _ GNUC),
BOOST_LEAF_CHECK expands to a GNU C statement expression, which allows its use with non-voi d
result types in any expression; see Checking for Errors.

BOOST_LEAF_THROW EXCEPTI ON

#include <boost/leaf/exception.hpp>

#define BOOST_LEAF_THROW_EXCEPTION <<exact-dedfinition-unspecified>>

Effects:

BOOST_LEAF_THROW EXCEPTI ON(e..) is equivalent to | eaf::throw exception(e..), except
the current source location is automatically communicated with the thrown exception, in a
e_source_| ocati on object (in addition to all e...objects).

119

https://gcc.gnu.org/onlinedocs/gcc/Statement-Exprs.html

BOOST LEAF NEW ERROR

#include <boost/leaf/error.hpp>

#define BOOST_LEAF_NEW_ERROR <<exact-definition-unspecified>>

Effects:

BOOST_LEAF_NEW ERROR(e..) is equivalent to |eaf::new error(e.), except the current
source location is automatically passed, in a e_source_| ocati on object (in addition to all e...
objects).

120

Configuration

The following configuration macros are recognized:

* BOOST_LEAF_CFG _DI AGNGCSTI CS: Defining this macro as 0 stubs out both di agnostic_info
and ver bose_di agnosti c_i nf o (if the macro is left undefined, LEAF defines it as 1).

* BOOST_LEAF_CFG STD SYSTEM ERROR: Defining this macro as 0 disables the
std::error_code /std::error_condition integration. In this case LEAF does not #i ncl ude
<system error>, which may be too heavy for embedded platforms (if the macro is left
undefined, LEAF defines it as 1).

* BOOST_LEAF_CFG _STD_STRI NG Defining this macro as 0 disables all use of std: : stri ng (this
requires BOOST_LEAF_CFG DI AGNOSTI CS=0 as well). In this case LEAF does not #i ncl ude
<string> which may be too heavy for embedded platforms (if the macro is left undefined,
LEAF defines it as 1).

* BOOST_LEAF_CFG_CAPTURE: Defining this macro as 0 disablestry_capt ure_al | , which (only if
used) allocates memory dynamically (if the macro is left undefined, LEAF defines it as 1).

* BOOST_LEAF_CFG_GNUC_STMIEXPR: This macro controls whether or not BOOST LEAF CHECK is
defined in terms of a GNU C statement expression, which enables its use to check for errors
similarly to how the questionmark operator works in some languages (see Checking for Errors).
By default the macro is defined as 1 under __GNUC__, otherwise as 0.

* BOOST_LEAF_CFG W N32: Defining this macro as 1 enables the default constructor in
e_LastError, and the automatic conversion to string (via Format MessageA) when
ver bose_di agnosti c_i nf o is printed. If the macro is left undefined, LEAF defines it as 0 (even
on windows, since including wi ndows. h is generally not desirable). Note that the e_Last Err or
type itself is available on all platforms, there is no need for conditional compilation in error
handlers that use it.

* BOOST_LEAF_NO_EXCEPTI ONS: Disables all exception handling support. If left undefined, LEAF
defines it automatically based on the compiler configuration (e.g. - f no- excepti ons).

* BOOST_LEAF_NO _THREADS: Disables all thread safety in LEAF.

Configuring TLS Access

LEAF requires support for thread-local voi d pointers. By default, this is implemented by means of
the C++11 t hread_| ocal keyword, but in order to support embedded platforms, it is possible to
configure LEAF to wuse an array of thread local pointers instead, by defining
BOOST_LEAF_USE_TLS_ARRAY. In this case, the user is required to define the following two
functions to implement the required TLS access:

namespace boost { namespace leaf {

namespace tls

{
void * read_void_ptr(int tls_index) noexcept;
void write_void_ptr(int tls_index, void * p) noexcept;

121

https://gcc.gnu.org/onlinedocs/gcc/Statement-Exprs.html

O For efficiency, read_voi d_ptr andwrite_voi d_ptr should be defined i nl i ne.

Under BOOST_LEAF_USE_TLS_ARRAY the following additional configuration macros are recognized:

* BOOST_LEAF_CFG TLS_ARRAY_START_I NDEX specifies the start TLS array index available to
LEAF (if the macro is left undefined, LEAF defines it as 0).

* BOOST_LEAF_CFG TLS_ARRAY_SI ZE may be defined to specify the size of the TLS array. In this
case TLS indices are validated via BOOST_LEAF_ASSERT before being passed to read_voi d_ptr
/wite_void ptr.

* BOOST_LEAF_CFG TLS_| NDEX_TYPE may be defined to specify the integral type used to store
assigned TLS indices (if the macro is left undefined, LEAF defines it as unsi gned char).

Reporting error objects of types that are not used by the program to handle
O failures does not consume TLS pointers. The minimum size of the TLS pointer
- array required by LEAF is the total number of different types used as arguments to
error handlers (in the entire program), plus one.

Beware of read_void_ptr/wite_void_ptr accessing thread local pointers
A beyond the static boundaries of the thread local pointer array; this will likely
result in undefined behavior.

Embedded Platforms

Defining BOOST_LEAF_EMBEDDED is equivalent to the following:

#ifndef BOOST_LEAF_CFG_DIAGNOSTICS
define BOOST_LEAF_CFG_DIAGNOSTICS 0
#lendif

#ifndef BOOST_LEAF_CFG_STD_SYSTEM_ERROR
define BOOST_LEAF_CFG_STD SYSTEM_ERROR @
ftendif

#ifndef BOOST _LEAF _CFG_STD STRING

define BOOST_LEAF_CFG_STD _STRING 0
#endif

#ifndef BOOST_LEAF_CFG_CAPTURE

define BOOST_LEAF_CFG_CAPTURE @
#lendif

LEAF supports FreeRTOS out of the box, please define BOOST_LEAF_TLS FREERTOS (in which case

122

LEAF automatically defines BOOST_LEAF_EMBEDDED, if it is not defined already).

For other embedded platforms, please define BOOST_LEAF_USE_TLS ARRAY, see Configuring TLS
Access.

If your program does not use concurrency at all, simply define BOOST_LEAF_NO_THREADS, which
requires no TLS support at all (but is NOT thread-safe).

123

Portability

The source code is compatible with C++11 or newer.

LEAF uses thread-local storage (only for pointers). By default, this is implemented via the C++11
t hread_| ocal storage class specifier, but the library is easily configurable to use any platform-
specific TLS API instead (it ships with built-in support for FreeRTOS). See Configuration.

124

Running the Unit Tests

The unit tests can be run with Meson Build or with Boost Build. To run the unit tests:

Meson Build

Clone LEAF into any local directory and execute:

cd leaf

meson bld/debug
cd bld/debug
meson test

See neson_opti ons. t xt found in the root directory for available build options.

Boost Build

Assuming the current working directory is <boost r oot >/ | i bs/ | eaf :

../../b2 test

125

https://mesonbuild.com

Benchmark

This benchmark compares the performance of LEAF, Boost Outcome and t | : : expect ed.

126

https://github.com/boostorg/leaf/blob/master/benchmark/benchmark.md

Design Rationale

Definition:

Objects that carry information about error conditions are called error objects. For example,
objects of type st d: : error _code are error objects.

9 The following reasoning is independent of the mechanism used to transport error
objects, whether it is exception handling or anything else.

Definition:

Depending on their interaction with error objects, functions can be classified as follows:

 Error initiating: functions that initiate error conditions by creating new error objects.

* Error neutral: functions that forward to the caller error objects communicated by lower-
level functions they call.

* Error handling: functions that dispose of error objects they have received, recovering
normal program operation.

A crucial observation is that error initiating functions are typically low-level functions that lack any
context and can not determine, much less dictate, the correct program behavior in response to the
errors they may initiate. Error conditions which (correctly) lead to termination in some programs
may (correctly) be ignored in others; yet other programs may recover from them and resume
normal operation.

The same reasoning applies to error neutral functions, but in this case there is the additional issue
that the errors they need to communicate, in general, are initiated by functions multiple levels
removed from them in the call chain, functions which usually are—and should be treated
as— implementation details. An error neutral function should not be coupled with error object
types communicated by error initiating functions, for the same reason it should not be coupled with
any other aspect of their interface.

Finally, error handling functions, by definition, have the full context they need to deal with at least
some, if not all, failures. In their scope it is an absolute necessity that the author knows exactly
what information must be communicated by lower level functions in order to recover from each
error condition. Specifically, none of this necessary information can be treated as implementation
details; in this case, the coupling which is to be avoided in error neutral functions is in fact
desirable.

We’re now ready to define our

Design goals:
* Error initiating functions should be able to communicate all information available to them
that is relevant to the failure being reported.

» Error neutral functions should not be coupled with error types communicated by lower-
level error initiating functions. They should be able to augment any failure with additional
relevant information available to them.

127

* Error handling functions should be able to access all the information communicated by
error initiating or error neutral functions that is needed in order to deal with failures.

The design goal that error neutral functions are not coupled with the static type of error objects that
pass through them seems to require dynamic polymorphism and therefore dynamic memory
allocations (the Boost Exception library meets this design goal at the cost of dynamic memory
allocation).

As it turns out, dynamic memory allocation is not necessary due to the following

Fact:

» Error handling functions "know" which of the information error initiating and error neutral
functions are able to communicate is actually needed in order to deal with failures in a
particular program. Ideally, no resources should be #sed wasted storing or communicating
information which is not currently needed to handle errors, even if it is relevant to the
failure.

For example, if a library function is able to communicate an error code but the program does not
need to know the exact error code, then that information may be ignored at the time the library
function attempts to communicate it. On the other hand, if an error handling function needs that
information, the memory needed to store it can be reserved statically in its scope.

The LEAF functions try_handl e_sone, try handle_all and try_catch implement this idea.
Users provide error handling lambda functions, each taking arguments of the types it needs in
order to recover from a particular error condition. LEAF simply provides the space needed to store
these types (in the form of a st d: : t upl e, using automatic storage duration) until they are passed
to a suitable handler.

At the time this space is reserved in the scope of an error handling function, t hr ead_I ocal
pointers of the required error types are set to point to the corresponding objects within it. Later on,
error initiating or error neutral functions wanting to communicate an error object of a given type E
use the corresponding t hr ead_| ocal pointer to detect if there is currently storage available for
this type:

« If the pointer is not null, storage is available and the object is moved into the pointed storage,
exactly once —regardless of how many levels of function calls must unwind before an error
handling function is reached.

« If the pointer is null, storage is not available and the error object is discarded, since no error
handling function makes any use of it in this program — saving resources.

This almost works, except we need to make sure that error handling functions are protected from
accessing stale error objects stored in response to previous failures, which would be a serious logic
error. To this end, each occurrence of an error is assigned a unique error_id. Each of the E...
objects stored in error handling scopes is assigned an er r or _i d as well, permanently associating it
with a particular failure.

Thus, to handle a failure we simply match the available error objects (associated with its unique
error_i d) with the argument types required by each user-provided error handling function. In
terms of C++ exception handling, it is as if we could write something like:

128

try
{

auto r = process_file();

//Success, use r:

catch(file_read error &, e_file_name const & fn, e_errno const & err)
{
std::cerr <<
"Could not read " << fn << ", errno=" << err << std::endl;

catch(file_read error &, e _errno const & err)
{
std::cerr <<
"File read error, errno='

<< err << std::endl;

}
catch(file_read error &)
{
std::cerr << "File read error!" << std::endl;
}

Of course this syntax is not valid, so LEAF uses lambda functions to express the same idea:

leaf::try_catch(

[]
{
auto r = process_file(); //Throws in case of failure, error objects stored inside
the try_catch scope

//Success, use r:

[1(file_read_error &, e_file_name const & fn, e_errno const & err)
{
std::cerr <<
"Could not read " << fn <<

, errno=" << err << std::endl;

}I

[1(file_read_error & e_errno const & err)

{
std::cerr <<
"File read error, errno=" << err << std::endl;

}

129

[1(file_read_error &)
{

std::cerr << "File read error!" << std::endl;

})

try catch | e file_nane | e_errno

Similar syntax works without exception handling as well. Below is the same snippet, written using
resul t <T>:

return leaf::try_handle_some(

[TO) -> leaf::result<void>

{
BOOST_LEAF_AUTO(r, process_file()); //In case of errors, error objects are stored
inside the try_handle_some scope

//Success, use r:

return { };
}
[1(leaf::match<error_enum, file read error>, e _file_name const & fn, e_errno const &
err)
{

std::cerr <<
"Could not read " << fn <<

, errno=" << err << std::endl;

}I

[1(leaf::match<error_enum, file_read error>, e_errno const & err)

{

std::cerr <<
"File read error, errno=" << err << std::endl;

+
[1(leaf::match<error_enum, file_read _error>)
{
std::cerr << "File read error!" << std::endl;
)

result |try handl e _sone | match | e_file_nane | e_errno

130

Limitations

When using dynamic linking, it is required that error types are declared with def aul t visibility,
e.g.

struct __attribute__ ((visibility ("default"))) my_error_info
{

int value;

+

This works as expected except on Windows, where thread-local storage is not shared between the
individual binary modules. For this reason, to transport error objects across DLL boundaries, it is
required that they’re captured in a [polymorphic context], just like when Transporting Errors
Between Threads.

(r) When using dynamic linking, it is always best to define module interfaces in terms
- of C (and implement them in C++ if appropriate).

131

Alternatives to LEAF

* Boost Exception

¢ Boost Qutcome

e t|::expected

Below we offer a comparison of Boost LEAF to Boost Exception and to Boost Outcome.

Comparison to Boost Exception

While LEAF can be used without exception handling, in the use case when errors are
communicated by throwing exceptions, it can be viewed as a better, more efficient alternative to
Boost Exception. LEAF has the following advantages over Boost Exception:

* LEAF does not allocate memory dynamically;

* LEAF does not waste system resources communicating error objects not used by specific error
handling functions;

* LEAF does not store the error objects in the exception object, and therefore it is able to augment
exceptions thrown by external libraries (Boost Exception can only augment exceptions of types
that derive from boost : : excepti on).

The following tables outline the differences between the two libraries which should be considered
when code that uses Boost Exception is refactored to use LEAF instead.

0 It is possible to access Boost Exception error information using the LEAF error
handling interface. See Boost Exception Integration.

Table 1. Defining a custom type for transporting values of type T

Boost Exception LEAF
typedef error_info<struct my_info_,T> struct my_info { T value; };
my_info;

boost::error _info

Table 2. Passing arbitrary info at the point of the throw

Boost Exception LEAF
throw my_exception() << leaf::throw_exception(my_exception(),
my_info(x) << my_info{x},
my_info(y); my_info{y});
oper at or << t hrow exception

Table 3. Augmenting exceptions in error neutral contexts

132

https://www.boost.org/doc/libs/release/libs/exception/doc/boost-exception.html
https://ned14.github.io/outcome
https://github.com/TartanLlama/expected
https://www.boost.org/doc/libs/release/libs/exception/doc/error_info.html
https://www.boost.org/doc/libs/release/libs/exception/doc/exception_operator_shl.html

Boost Exception LEAF

try auto load = leaf::on_error(my_info{x}

{)i
f(O);

} f(0);

catch(boost::exception & e)

{ on_error
e << my_info(x);
throw;

}

boost : : exception | operat or <<

Table 4. Obtaining arbitrary info at the point of the catch

Boost Exception LEAF

try leaf::try_catch(

{ []
f(); {

} f(); // throws

catch(my_exception & e) }

{ [1(my_exception &, my_info const & x)
if(T * v = get_error_info<my_info>(e) {

) //my_info is available with
{ //the caught exception.

//my_info is available in e.)

}

}

try catch

boost::get _error _info

Table 5. Transporting of error objects
Boost Exception LEAF

All supplied boost::error_info objects are User-defined error objects are stored statically
allocated dynamically and stored in the in the scope of try_catch, but only if their
boost : : excepti on subobject of exception types are needed to handle errors; otherwise
objects. they are discarded.

Table 6. Transporting of error objects across thread boundaries

Boost Exception LEAF

boost : : excepti on_ptr automatically captures Transporting error objects across thread
boost::error_info objects stored in a boundariesrequires the use of [capture].
boost:: exception and can transport them

across thread boundaries.

133

https://www.boost.org/doc/libs/release/libs/exception/doc/exception.html
https://www.boost.org/doc/libs/release/libs/exception/doc/exception_operator_shl.html
https://www.boost.org/doc/libs/release/libs/exception/doc/get_error_info.html
https://www.boost.org/doc/libs/release/libs/exception/doc/error_info.html
https://www.boost.org/doc/libs/release/libs/exception/doc/exception.html
https://www.boost.org/doc/libs/release/libs/exception/doc/exception_ptr.html
https://www.boost.org/doc/libs/release/libs/exception/doc/error_info.html

Table 7. Printing of error objects in automatically-generated diagnostic information messages
Boost Exception LEAF

boost::error_info types may define LEAF does not use to_string. Error types may
conversion to std::string by providing define oper at or << overloads for
to_string overloads or by overloading std::ostream

oper at or << for st d: : ostream

The fact that Boost Exception stores all supplied boost::error_info

objects—while LEAF discards them if they aren’t needed —affects the

completeness of the message we get when we print | eaf : : <<di agnosti c_i nf o>
A objects, compared to the string returned by boost : : di agnosti c_i nf ormati on.

If the user requires a complete diagnostic message, the solution is to use
| eaf : : ver bose_di agnosti c_i nf 0. In this case, before unused error objects are
discarded by LEAF, they are converted to string and printed. Note that this
allocates memory dynamically.

Comparison to Boost Outcome

Design Differences

Like LEAF, the Boost Qutcome library is designed to work in low latency environments. It provides
two class templates, r esul t <> and out cone<>:

* resul t <T, EC, NVP> can be used as the return type in noexcept functions which may fail,
where T specifies the type of the return value in case of success, while EC is an "error code"
type. Semantically, r esul t <T, EC> is similar to st d: : vari ant <T, EC>. Naturally, EC defaults to
std::error_code.

e out cone<T, EC, EP, NVP> is similar to r esul t <>, but in case of failure, in addition to the "error
code" type ECit can hold a "pointer" object of type EP, which defaults to st d: : excepti on_ptr.

e NVP is a policy type used to customize the behavior of .val ue() when the
resul t <> or the out conme<> object contains an error.

The idea is to use resul t <> to communicate failures which can be fully specified by an "error
code", and out come<> to communicate failures that require additional information.

Another way to describe this design is that r esul t <> is used when it suffices to return an error
object of some static type EC, while out come<> can also transport a polymorphic error object, using
the pointer type EP.

In the default configuration of out come<T> the additional information —or the
e additional polymorphic object—is an exception object held by
std: : exception_ptr. This targets the use case when an exception thrown by a
lower-level library function needs to be transported through some intermediate

134

https://www.boost.org/doc/libs/release/libs/exception/doc/diagnostic_information.html
https://ned14.github.io/outcome

contexts that are not exception-safe, to a higher-level context able to handle it.
LEAF directly supports this use as well, see exception_to_result.

Similar reasoning drives the design of LEAF as well. The difference is that while both libraries
recognize the need to transport "something else" in addition to an "error code", LEAF provides an
efficient solution to this problem, while Outcome shifts this burden to the user.

The | eaf : : resul t <> template deletes both EC and EP, which decouples it from the type of the
error objects that are transported in case of a failure. This enables lower-level functions to freely
communicate anything and everything they "know" about the failure: error code, even multiple
error codes, file names, URLs, port numbers, etc. At the same time, the higher-level error handling
functions control which of this information is needed in a specific client program and which is not.
This is ideal, because:

» Authors of lower-level library functions lack context to determine which of the information that
is both relevant to the error and naturally available to them needs to be communicated in order
for a particular client program to recover from that error;

* Authors of higher-level error handling functions can easily and confidently make this
determination, which they communicate naturally to LEAF, by simply writing the different
error handlers. LEAF will transport the needed error objects while discarding the ones handlers
don’t care to use, saving resources.

(r') The LEAF examples include an adaptation of the program from the Boost Outcome
- r esul t <> tutorial. You can view it on GitHub.

Programs wusing LEAF for error handling are not required to use
0 | eaf :: resul t <T>; for example, it is possible to use out cone: : resul t <T> with
LEAF.

The Interoperability Problem

The Boost Outcome documentation discusses the important problem of bringing together multiple
libraries — each using its own error reporting mechanism —and incorporating them in a robust
error handling infrastructure in a client program.

Users are advised that whenever possible they should use a common error handling system
throughout their entire codebase, but because this is not practical, both the resul t <> and the
out cone<> templates can carry user-defined "payloads".

The following analysis is from the Boost Outcome documentation:

If library A uses resul t<T, libraryA: :failure_info> and library B uses result<T,
l'i braryB:: error_info>and so on, there becomes a problem for the application writer who
is bringing in these third party dependencies and tying them together into an application. As a
general rule, each third party library author will not have built in explicit interoperation
support for unknown other third party libraries. The problem therefore lands with the
application writer.

135

https://ned14.github.io/outcome/tutorial/essential/result/
https://ned14.github.io/outcome/tutorial/essential/result/
https://ned14.github.io/outcome/tutorial/essential/result/
https://ned14.github.io/outcome/tutorial/essential/result/
https://github.com/boostorg/leaf/blob/master/example/print_half.cpp?ts=4

The application writer has one of three choices:

The analysis above (emphasis added) is clear and precise, but LEAF and Boost Outcome tackle the

1. In the application, the form of result used is resul t <T, std::variant<El, E2, .>>

where E1, E2 ...are the failure types for every third party library in use in the
application. This has the advantage of preserving the original information exactly, but
comes with a certain amount of use inconvenience and maybe excessive coupling between
high level layers and implementation detail.

. One can translate/map the third party’s failure type into the application’s failure type at the

point of the failure exiting the third party library and entering the application. One might
do this, say, with a C preprocessor macro wrapping every invocation of the third party API
from the application. This approach may lose the original failure detail, or mis-map under
certain circumstances if the mapping between the two systems is not one-one.

. One can type erase the third party’s failure type into some application failure type, which

can later be reconstituted if necessary. This is the cleanest solution with the least
coupling issues and no problems with mis-mapping, but it almost certainly requires the
use of mal | oc which the previous two did not.

interoperability problem differently:

* The Boost Outcome design asserts that the "cleanest" solution based on type-erasure is
suboptimal ("almost certainly requires the use of mal | oc"), and instead provides a system for
injecting custom converters into the out come: : convert namespace, used to translate between
library-specific and program-wide error types, even though this approach "may lose the original
failure detail".

Further, consider that Outcome aims to hopefully become the one error handling API all libraries
would use, and in theory everyone would benefit from uniformity and standardization. But the
reality is that this is wishful thinking. In fact, that reality is reflected in the design of
out cone: :resul t<>, in its lack of commitment to using std::error_code for its intended
purpose: to be the standard type for transporting error codes. The fact is that std: : error_code

The LEAF design asserts that coupling the signatures of error neutral functions with the static
types of the error objects they need to forward to the caller does not scale, and instead
transports error objects directly to error handling scopes where they are stored statically,
effectively implementing the third choice outlined above (without the use of mal | oc).

became yet another error code type programmers need to understand and support.

In contrast, the design of LEAF acknowledges that C++ programmers don’t even agree on what a
string is. If your project uses 10 different libraries, this probably means 15 different ways to report

errors, sometimes across uncooperative interfaces (e.g. C APIs). LEAF helps you get the job done.

136

Acknowledgements

Special thanks to Peter Dimov and Sorin Fetche.

Ivo Belchev, Sean Palmer, Jason King, Vinnie Falco, Glen Fernandes, Augustin Bergé — thanks for
the valuable feedback.

Documentation rendered by Asciidoctor with these customizations.

137

https://asciidoctor.org/
https://github.com/zajo/asciidoctor_skin

	LEAF
	Abstract
	Support
	Distribution
	Tutorial
	Reporting Errors
	Checking for Errors
	Error Handling
	Working with Different Error Types
	Working with Multiple Error Objects
	Augmenting Errors
	Exception Handling
	Using External result Types
	Interoperability
	Loading of Error Objects
	Using on_error
	Using Predicates to Handle Errors
	Reusing Common Error Handlers
	Transporting Errors Between Threads
	Classification of Failures
	Converting Exceptions to result<T>
	Using error_monitor to Report Arbitrary Errors from C-callbacks
	Diagnostic Information
	Working with std::error_code, std::error_condition
	Boost Exception Integration

	Examples
	Synopsis
	Error Reporting
	Error Handling

	Reference: Functions
	activate_context
	context_type_from_handlers
	current_error
	exception_to_result
	make_context
	new_error
	on_error
	throw_exception
	to_variant
	try_capture_all
	try_catch
	try_handle_all
	try_handle_some

	Reference: Types
	context
	context_activator
	diagnostic_info
	error_id
	error_monitor
	e_api_function
	e_at_line
	e_errno
	e_file_name
	e_LastError
	e_source_location
	e_type_info_name
	error_info
	result
	verbose_diagnostic_info

	Reference: Predicates
	catch_
	if_not
	match
	match_member
	match_value

	Reference: Traits
	is_predicate
	is_result_type

	Reference: Macros
	BOOST_LEAF_ASSIGN
	BOOST_LEAF_AUTO
	BOOST_LEAF_CHECK
	BOOST_LEAF_THROW_EXCEPTION
	BOOST_LEAF_NEW_ERROR

	Configuration
	Configuring TLS Access
	Embedded Platforms

	Portability
	Running the Unit Tests
	Meson Build
	Boost Build

	Benchmark
	Design Rationale
	Limitations
	Alternatives to LEAF
	Comparison to Boost Exception
	Comparison to Boost Outcome

	Acknowledgements

