mirror of
https://github.com/boostorg/lambda.git
synced 2026-01-21 04:52:25 +00:00
377 lines
11 KiB
C++
377 lines
11 KiB
C++
// bind_tests_advanced.cpp --------------------------------
|
|
|
|
#define BOOST_INCLUDE_MAIN // for testing, include rather than link
|
|
#include <boost/test/test_tools.hpp> // see "Header Implementation Option"
|
|
|
|
#include "boost/lambda/bind.hpp"
|
|
#include "boost/lambda/lambda.hpp"
|
|
|
|
#include "boost/any.hpp"
|
|
|
|
#include <iostream>
|
|
|
|
#include <functional>
|
|
|
|
#include <algorithm>
|
|
|
|
|
|
using namespace boost::lambda;
|
|
|
|
int sum_0() { return 0; }
|
|
int sum_1(int a) { return a; }
|
|
int sum_2(int a, int b) { return a+b; }
|
|
|
|
int product_2(int a, int b) { return a*b; }
|
|
|
|
// unary function that returns a pointer to a binary function
|
|
typedef int (*fptr_type)(int, int);
|
|
fptr_type sum_or_product(bool x) {
|
|
return x ? sum_2 : product_2;
|
|
}
|
|
|
|
// a nullary functor that returns a pointer to a unary function that
|
|
// returns a pointer to a binary function.
|
|
struct which_one {
|
|
typedef fptr_type (*result_type)(bool x);
|
|
result_type operator()() const { return sum_or_product; }
|
|
};
|
|
|
|
void test_nested_binds()
|
|
{
|
|
int j = 2; int k = 3;
|
|
|
|
// bind calls can be nested (the target function can be a lambda functor)
|
|
// The interpretation is, that the innermost lambda functor returns something
|
|
// that is bindable (another lambda functor, function pointer ...)
|
|
bool condition;
|
|
|
|
condition = true;
|
|
BOOST_TEST(bind(bind(&sum_or_product, _1), 1, 2)(condition)==3);
|
|
BOOST_TEST(bind(bind(&sum_or_product, _1), _2, _3)(condition, j, k)==5);
|
|
|
|
condition = false;
|
|
BOOST_TEST(bind(bind(&sum_or_product, _1), 1, 2)(condition)==2);
|
|
BOOST_TEST(bind(bind(&sum_or_product, _1), _2, _3)(condition, j, k)==6);
|
|
|
|
|
|
which_one wo;
|
|
BOOST_TEST(bind(bind(bind(wo), _1), _2, _3)(condition, j, k)==6);
|
|
|
|
|
|
return;
|
|
}
|
|
|
|
|
|
// unlambda -------------------------------------------------
|
|
|
|
// Sometimes it may be necessary to prevent the argument substitution of
|
|
// taking place. For example, we may end up with a nested bind expression
|
|
// inadvertently when using the target function is received as a parameter
|
|
|
|
template<class F>
|
|
int call_with_100(const F& f) {
|
|
|
|
|
|
|
|
// bind(f, _1)(make_const(100));
|
|
// This would result in;
|
|
// bind(_1 + 1, _1)(make_const(100)) , which would be a compile time error
|
|
|
|
return bind(unlambda(f), _1)(make_const(100));
|
|
|
|
// for other functors than lambda functors, unlambda has no effect
|
|
// (except for making them const)
|
|
}
|
|
|
|
template<class F>
|
|
int call_with_101(const F& f) {
|
|
|
|
return bind(unlambda(ret<int>(f)), _1)(make_const(101));
|
|
|
|
// the ret must be inside of unlambda, since unlambda requires its argument
|
|
// to define result_type.
|
|
// if F is not a lambda functor ret<int>(f) fails at compile time!
|
|
}
|
|
|
|
void test_unlambda() {
|
|
|
|
BOOST_TEST(call_with_100(ret<int>(_1 + 1)) == 101);
|
|
// note, that the functor must define the result_type typedef, as the bind
|
|
// int the called function does not do that.
|
|
|
|
BOOST_TEST(call_with_101(_1 + 1) == 102);
|
|
// This one leaves the return type to be specified by the bind in the
|
|
// called function, and that makes things kind of hard in the called
|
|
// function
|
|
|
|
BOOST_TEST(call_with_100(std::bind1st(std::plus<int>(), 1)) == 101);
|
|
|
|
// BOOST_TEST(call_with_101(std::bind1st(std::plus<int>(), 1)) == 102);
|
|
// this would fail, as it would lead to ret being called with other than
|
|
// a lambda functor
|
|
}
|
|
|
|
// protect ------------------------------------------------------------
|
|
|
|
// protect protects a lambda functor from argument substitution.
|
|
// protect is useful e.g. with nested stl algorithm calls.
|
|
|
|
namespace ll {
|
|
|
|
struct for_each : public has_sig {
|
|
|
|
// note, std::for_each returns it's last argument
|
|
// We want the same behaviour from our ll::for_each.
|
|
// However, the functor can be called with any arguments, and
|
|
// the return type thus depends on the argument types.
|
|
// The basic mechanism (provide a result_type typedef) does not
|
|
// work.
|
|
|
|
// There is an alternative for this kind of situations, which LL
|
|
// borrows from FC++ (by Yannis Smaragdakis and Brian McNamara).
|
|
|
|
// If you want to use this mechanism, your function object class needs to
|
|
// 1. inhertit publicly from has_sig
|
|
// 2. Provide a sig class member template:
|
|
|
|
// The return type deduction system instantiate this class as:
|
|
// sig<Args>::type, where Args is a boost::tuples::cons-list
|
|
// The head type is the function object type itself
|
|
// cv-qualified (so it is possilbe to provide different return types
|
|
// for differently cv-qualified operator()'s.
|
|
|
|
// The tail type is the list of the types of the actual arguments the
|
|
// function was called with.
|
|
// So sig should contain a typedef type, which defines a mapping from
|
|
// the operator() arguments to its return type.
|
|
// Note, that it is possible to provide different sigs for the same functor
|
|
// if the functor has several operator()'s, even if they have different
|
|
// number of arguments.
|
|
|
|
// Note, that the argument types in Args can be arbitrary types, particularly
|
|
// they can be reference types and can have qualifiers or both.
|
|
// So some care will be needed in this respect.
|
|
|
|
template <class Args>
|
|
struct sig {
|
|
typedef typename boost::remove_const<
|
|
typename boost::remove_reference<
|
|
typename boost::tuples::element<3, Args>::type
|
|
>::type
|
|
>::type type;
|
|
};
|
|
|
|
template <class A, class B, class C>
|
|
C
|
|
operator()(const A& a, const B& b, const C& c) const
|
|
{ return std::for_each(a, b, c);}
|
|
};
|
|
|
|
} // end of ll namespace
|
|
|
|
void test_protect()
|
|
{
|
|
int i = 0;
|
|
int b[3][5];
|
|
int* a[3];
|
|
|
|
for(int j=0; j<3; ++j) a[j] = b[j];
|
|
|
|
std::for_each(a, a+3,
|
|
bind(ll::for_each(), _1, _1 + 5, protect(_1 = ++var(i))));
|
|
|
|
// This is how you could output the values (it is uncommented, no output
|
|
// from a regression test file):
|
|
// std::for_each(a, a+3,
|
|
// bind(ll::for_each(), _1, _1 + 5,
|
|
// std::cout << constant("\nLine ") << (&_1 - a) << " : "
|
|
// << protect(_1)
|
|
// )
|
|
// );
|
|
|
|
int sum = 0;
|
|
|
|
std::for_each(a, a+3,
|
|
bind(ll::for_each(), _1, _1 + 5,
|
|
protect(sum += _1))
|
|
);
|
|
BOOST_TEST(sum == (1+15)*15/2);
|
|
|
|
sum = 0;
|
|
|
|
std::for_each(a, a+3,
|
|
bind(ll::for_each(), _1, _1 + 5,
|
|
sum += 1 + protect(_1)) // add element count
|
|
);
|
|
BOOST_TEST(sum == (1+15)*15/2 + 15);
|
|
|
|
|
|
int k = 0;
|
|
((k += constant(1)) += protect(constant(2)))();
|
|
BOOST_TEST(k==1);
|
|
|
|
k = 0;
|
|
((k += constant(1)) += protect(constant(2)))()();
|
|
BOOST_TEST(k==3);
|
|
|
|
// note, the following doesn't work:
|
|
|
|
// ((var(k) = constant(1)) = protect(constant(2)))();
|
|
|
|
// (var(k) = constant(1))() returns int& and thus the
|
|
// second assignment fails.
|
|
|
|
// We should have something like:
|
|
// bind(var, var(k) = constant(1)) = protect(constant(2)))();
|
|
// But currently var is not bindable.
|
|
|
|
// The same goes with ret. A bindable ret could be handy sometimes as well
|
|
// (protect(std::cout << _1), std::cout << _1)(i)(j); does not work
|
|
// because the comma operator tries to store the result of the evaluation
|
|
// of std::cout << _1 as a copy (and you can't copy std::ostream).
|
|
// something like this:
|
|
// (protect(std::cout << _1), bind(ref, std::cout << _1))(i)(j);
|
|
|
|
// But for now, ref is not bindable. There are other ways around this:
|
|
|
|
// int x = 1, y = 2;
|
|
// (protect(std::cout << _1), (std::cout << _1, 0))(x)(y);
|
|
|
|
// added one dummy value to make the argument to comma an int
|
|
// instead of ostream&
|
|
|
|
// Note, the same problem is more apparent without protect
|
|
// (std::cout << 1, std::cout << constant(2))(); // does not work
|
|
|
|
// (boost::ref(std::cout << 1), std::cout << constant(2))(); // this does
|
|
}
|
|
|
|
|
|
void test_lambda_functors_as_arguments_to_lambda_functors() {
|
|
|
|
// lambda functor is a function object, and can therefore be used
|
|
// as an argument to another lambda functors function call object.
|
|
|
|
// Note however, that the argument/type substitution is not entered again.
|
|
// This means, that something like this will not work:
|
|
(_1 + _2)(bind(&sum_0), make_const(7));
|
|
// or it does work, but the effect is not to call
|
|
// sum_0() + 7, but rather
|
|
// bind(sum_0) + 7, which results in another lambda functor
|
|
// (lambda functor + int) and can be called again
|
|
BOOST_TEST((_1 + _2)(bind(&sum_0), make_const(7))() == 7);
|
|
|
|
|
|
// also, note that lambda functor are no special case for bind if received
|
|
// as a parameter. In oder to be bindable, the functor must
|
|
// either define the result_type typedef, have the sig template, or then
|
|
// the return type must be defined within the bind call. Lambda functors
|
|
// do define the sig template, so if the return type deduction system
|
|
// covers the case, there is no need to specify the return type
|
|
// explicitly.
|
|
|
|
int a = 5, b = 6;
|
|
|
|
// Let type deduction take find out the return type
|
|
BOOST_TEST(bind(_1, _2, _3)(_1 + _2, a, b) == 11);
|
|
|
|
//specify it yourself:
|
|
BOOST_TEST(bind(_1, _2, _3)(ret<int>(_1 + _2), a, b) == 11);
|
|
BOOST_TEST(ret<int>(bind(_1, _2, _3))(_1 + _2, a, b) == 11);
|
|
BOOST_TEST(bind<int>(_1, _2, _3)(_1 + _2, a, b) == 11);
|
|
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
void test_currying() {
|
|
|
|
int a = 1, b = 2, c = 3;
|
|
|
|
// lambda functors support currying:
|
|
// binary functor can be called with just one argument, the result is
|
|
// a unary lambda functor.
|
|
// 3-ary functor can be called with one or two arguments (and with 3
|
|
// of course)
|
|
|
|
BOOST_TEST((_1 + _2)(a)(b) == 3);
|
|
|
|
BOOST_TEST((_1 + _2 + _3)(a, b)(c) == 6);
|
|
BOOST_TEST((_1 + _2 + _3)(a)(b, c) == 6);
|
|
BOOST_TEST((_1 + _2 + _3)(a)(b)(c) == 6);
|
|
|
|
// Also, lambda functors passed as arguments end up being curryable
|
|
|
|
BOOST_TEST(bind(_1, _2, _3)(_1 + _2 + _3, a, b)(c) == 6);
|
|
BOOST_TEST(bind(_1, _2)(_1 + _2 + _3, a)(b, c) == 6);
|
|
BOOST_TEST(bind(_1, _2)(_1 + _2 + _3, a)(b)(c) == 6);
|
|
|
|
bind(_1, _2)(_1 += (_2 + _3), a)(b)(c);
|
|
BOOST_TEST(a == 6);
|
|
|
|
bind(_1, _2)(a += (_1 + _2 + _3), c)(c)(c);
|
|
BOOST_TEST(a == 6+3*c);
|
|
|
|
a = 1, b = 2, c = 3;
|
|
// and protecting should work as well
|
|
BOOST_TEST(bind(_1, _2)(_1 + _2 + _3 + protect(_1), a)(b)(c)(a) == 7);
|
|
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
void test_const_parameters() {
|
|
|
|
// (_1 + _2)(1, 2); // this would fail,
|
|
|
|
// Either make arguments const:
|
|
BOOST_TEST((_1 + _2)(make_const(1), make_const(2)) == 3);
|
|
|
|
// Or use const_parameters:
|
|
BOOST_TEST(const_parameters(_1 + _2)(1, 2) == 3);
|
|
|
|
|
|
|
|
}
|
|
|
|
void test_break_const()
|
|
{
|
|
// break_const breaks constness! Be careful!
|
|
// You need this only if you need to have side effects on some argument(s)
|
|
// and some arguments are non-const rvalues:
|
|
|
|
// E.g.
|
|
int i = 1;
|
|
// (_1 += _2)(i, 2) // fails, 2 is a non-const rvalue
|
|
|
|
// const_parameters(_1 += _2)(i, 2) // fails, side-effect to i
|
|
break_const(_1 += _2)(i, 2); // ok
|
|
BOOST_TEST(i == 3);
|
|
}
|
|
|
|
int test_main(int, char *[]) {
|
|
|
|
test_nested_binds();
|
|
test_unlambda();
|
|
test_protect();
|
|
test_lambda_functors_as_arguments_to_lambda_functors();
|
|
test_currying();
|
|
test_const_parameters();
|
|
test_break_const();
|
|
return 0;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|