Implement new ABI for segment_manager that supports overaligned types.

This commit is contained in:
Ion Gaztañaga
2024-09-22 01:12:32 +02:00
parent d6c4649870
commit cbeb5b5ea9
6 changed files with 1140 additions and 630 deletions

View File

@@ -6774,6 +6774,9 @@ thank them:
* Some workarounds for Cygwin were added. Regression tests now work on Cygwin64. * Some workarounds for Cygwin were added. Regression tests now work on Cygwin64.
* [*ABI breaking]: `segment_manager` nows uses a new implementation that supports overaligned types and fixes some existing bugs.
You can obtain the pre-Boost 1.87 ABI #defining `BOOST_INTERPROCESS_SEGMENT_MANAGER_ABI` to `1` before including Boost.Interprocess headers.
* Fixed bugs: * Fixed bugs:
* [@https://github.com/boostorg/interprocess/issues/210 GitHub #210 (['"Bug in boost::interprocess::ipcdetail::sync_handles::obtain_mutex"])]. * [@https://github.com/boostorg/interprocess/issues/210 GitHub #210 (['"Bug in boost::interprocess::ipcdetail::sync_handles::obtain_mutex"])].
* [@https://github.com/boostorg/interprocess/issues/192 GitHub #192 (['"managed_windows_shared_memory crash on destruction"])]. * [@https://github.com/boostorg/interprocess/issues/192 GitHub #192 (['"managed_windows_shared_memory crash on destruction"])].

View File

@@ -71,6 +71,12 @@ class mem_algo_deallocator
{ if(m_ptr) m_algo.deallocate(m_ptr); } { if(m_ptr) m_algo.deallocate(m_ptr); }
}; };
#if !defined(BOOST_INTERPROCESS_SEGMENT_MANAGER_ABI)
#define BOOST_INTERPROCESS_SEGMENT_MANAGER_ABI 2
#endif //#if !defined(BOOST_INTERPROCESS_SEGMENT_MANAGER_ABI)
#if (BOOST_INTERPROCESS_SEGMENT_MANAGER_ABI == 1)
template<class size_type> template<class size_type>
struct block_header struct block_header
{ {
@@ -91,6 +97,7 @@ struct block_header
, m_alloc_type_sizeof_char( (unsigned char)((al_type << 5u) | ((unsigned char)szof_char & 0x1F)) ) , m_alloc_type_sizeof_char( (unsigned char)((al_type << 5u) | ((unsigned char)szof_char & 0x1F)) )
{}; {};
template<std::size_t>
size_type total_size() const size_type total_size() const
{ {
if(alloc_type() != anonymous_type){ if(alloc_type() != anonymous_type){
@@ -104,13 +111,13 @@ struct block_header
size_type value_bytes() const size_type value_bytes() const
{ return m_value_bytes; } { return m_value_bytes; }
template<class Header> template<std::size_t , class Header>
size_type total_size_with_header() const size_type total_size_with_header() const
{ {
return get_rounded_size return get_rounded_size
( size_type(sizeof(Header)) ( size_type(sizeof(Header))
, size_type(::boost::container::dtl::alignment_of<block_header<size_type> >::value)) , size_type(::boost::container::dtl::alignment_of<block_header<size_type> >::value))
+ total_size(); + this->template total_size<0>();
} }
unsigned char alloc_type() const unsigned char alloc_type() const
@@ -176,6 +183,10 @@ struct block_header
return hdr; return hdr;
} }
template<std::size_t, class >
static size_type front_space()
{ return 0u; }
private: private:
size_type value_offset() const size_type value_offset() const
{ {
@@ -188,26 +199,200 @@ struct block_header
} }
}; };
#elif (BOOST_INTERPROCESS_SEGMENT_MANAGER_ABI == 2)
template <class BlockHeader, class Header>
struct header_to_block_header_offset
{
BOOST_STATIC_CONSTEXPR std::size_t value = sizeof(Header)
+ ct_rounded_size< sizeof(BlockHeader)
, boost::move_detail::alignment_of<Header>::value
>::value
- sizeof(BlockHeader);
};
template <std::size_t MemAlignment, class BlockHeader, class Header>
struct prefix_offsets
{
BOOST_INTERPROCESS_STATIC_ASSERT(MemAlignment >= boost::move_detail::alignment_of<Header>::value);
BOOST_INTERPROCESS_STATIC_ASSERT(MemAlignment >= boost::move_detail::alignment_of<BlockHeader>::value);
BOOST_STATIC_CONSTEXPR std::size_t both_headers =
header_to_block_header_offset<BlockHeader, Header>::value + sizeof(BlockHeader);
BOOST_STATIC_CONSTEXPR std::size_t total_prefix = ct_rounded_size<both_headers, MemAlignment>::value;
BOOST_STATIC_CONSTEXPR std::size_t block_header_prefix = total_prefix - sizeof(BlockHeader);
BOOST_STATIC_CONSTEXPR std::size_t front_space = total_prefix - both_headers;
};
template <std::size_t MemAlignment, class BlockHeader>
struct prefix_offsets<MemAlignment, BlockHeader, void>
{
BOOST_INTERPROCESS_STATIC_ASSERT(MemAlignment >= boost::move_detail::alignment_of<BlockHeader>::value);
BOOST_STATIC_CONSTEXPR std::size_t total_prefix = ct_rounded_size<sizeof(BlockHeader), MemAlignment>::value;
BOOST_STATIC_CONSTEXPR std::size_t block_header_prefix = total_prefix - sizeof(BlockHeader);
BOOST_STATIC_CONSTEXPR std::size_t front_space = block_header_prefix;
};
template<class size_type>
struct block_header
{
const size_type m_value_bytes;
const unsigned short m_num_char;
const unsigned char m_alloc_type_sizeof_char;
block_header(size_type val_bytes
,size_type
,unsigned char al_type
,std::size_t szof_char
,std::size_t num_char
)
: m_value_bytes(val_bytes)
, m_num_char((unsigned short)num_char)
, m_alloc_type_sizeof_char( (unsigned char)((al_type << 5u) | ((unsigned char)szof_char & 0x1F)) )
{};
template<std::size_t MemAlignment>
size_type total_size() const
{
BOOST_CONSTEXPR_OR_CONST std::size_t block_header_prefix =
prefix_offsets<MemAlignment, block_header, void>::block_header_prefix;
if(alloc_type() != anonymous_type){
return block_header_prefix + name_offset() + (m_num_char+1u)*sizeof_char();
}
else{
return block_header_prefix + this->value_offset() + m_value_bytes;
}
}
template<std::size_t MemAlignment, class Header>
size_type total_size_with_header() const
{
BOOST_CONSTEXPR_OR_CONST std::size_t block_header_prefix =
prefix_offsets<MemAlignment, block_header, Header>::block_header_prefix;
return block_header_prefix + name_offset() + (m_num_char + 1u) * sizeof_char();
}
size_type value_bytes() const
{ return m_value_bytes; }
unsigned char alloc_type() const
{ return (m_alloc_type_sizeof_char >> 5u)&(unsigned char)0x7; }
unsigned char sizeof_char() const
{ return m_alloc_type_sizeof_char & (unsigned char)0x1F; }
template<class CharType>
CharType *name() const
{
return const_cast<CharType*>(move_detail::force_ptr<const CharType*>
(reinterpret_cast<const char*>(this) + name_offset()));
}
unsigned short name_length() const
{ return m_num_char; }
void *value() const
{
return const_cast<char*>((reinterpret_cast<const char*>(this) + this->value_offset()));
}
template<class T>
static block_header *block_header_from_value(T *value)
{
BOOST_ASSERT(is_ptr_aligned(value, ::boost::container::dtl::alignment_of<T>::value));
block_header* hdr =
const_cast<block_header*>
(move_detail::force_ptr<const block_header*>
(reinterpret_cast<const char*>(value) - value_offset()));
//Some sanity checks
BOOST_ASSERT(hdr->m_value_bytes % sizeof(T) == 0);
return hdr;
}
template<class Header>
static block_header *from_first_header(Header *header)
{
BOOST_ASSERT(is_ptr_aligned(header));
block_header * const hdr = move_detail::force_ptr<block_header*>(
reinterpret_cast<char*>(header) + header_to_block_header_offset<block_header, Header>::value
);
//Some sanity checks
BOOST_ASSERT(is_ptr_aligned(hdr));
return hdr;
}
template<class Header>
static const block_header *from_first_header(const Header *header)
{ return from_first_header(const_cast<Header*>(header)); }
template<class Header>
static Header *to_first_header(block_header *bheader)
{
BOOST_ASSERT(is_ptr_aligned(bheader));
Header * hdr = move_detail::force_ptr<Header*>(
reinterpret_cast<char*>(bheader) - header_to_block_header_offset<block_header, Header>::value
);
//Some sanity checks
BOOST_ASSERT(is_ptr_aligned(hdr));
return hdr;
}
template<std::size_t MemAlignment, class Header>
static size_type front_space()
{
return prefix_offsets<MemAlignment, block_header, Header>::front_space;
}
private:
static size_type value_offset()
{
return size_type(sizeof(block_header));
}
size_type name_offset() const
{
return this->value_offset() + get_rounded_size(size_type(m_value_bytes), size_type(sizeof_char()));
}
};
#else //(BOOST_INTERPROCESS_SEGMENT_MANAGER_ABI == )
#error "Incorrect BOOST_INTERPROCESS_SEGMENT_MANAGER_ABI value!"
#endif
template<class CharT> template<class CharT>
struct intrusive_compare_key struct intrusive_compare_key
{ {
typedef CharT char_type; typedef CharT char_type;
intrusive_compare_key(const CharT *str, std::size_t len) intrusive_compare_key(const CharT* str, std::size_t len)
: mp_str(str), m_len(len) : mp_str(str), m_len(len)
{} {}
const CharT *str() const const CharT* str() const
{ return mp_str; } {
return mp_str;
}
std::size_t len() const std::size_t len() const
{ return m_len; } {
return m_len;
}
const CharT * mp_str; const CharT* mp_str;
std::size_t m_len; std::size_t m_len;
}; };
//!This struct indicates an anonymous object creation //!This struct indicates an anonymous object creation
//!allocation //!allocation
template<instance_type type> template<instance_type type>
@@ -377,7 +562,13 @@ struct index_config
template<class HeaderBase> template<class HeaderBase>
struct intrusive_value_type struct intrusive_value_type
{ typedef intrusive_value_type_impl<HeaderBase, CharT, typename segment_manager_base::size_type> type; }; {
typedef intrusive_value_type_impl
< HeaderBase
, CharT
, typename segment_manager_base::size_type
> type;
};
typedef intrusive_compare_key<CharT> compare_key_type; typedef intrusive_compare_key<CharT> compare_key_type;
}; };

View File

@@ -75,6 +75,7 @@ class segment_manager_base
typedef segment_manager_base<MemoryAlgorithm> segment_manager_base_type; typedef segment_manager_base<MemoryAlgorithm> segment_manager_base_type;
typedef typename MemoryAlgorithm::void_pointer void_pointer; typedef typename MemoryAlgorithm::void_pointer void_pointer;
typedef typename MemoryAlgorithm::mutex_family mutex_family; typedef typename MemoryAlgorithm::mutex_family mutex_family;
static const std::size_t MemAlignment = MemoryAlgorithm::Alignment;
typedef MemoryAlgorithm memory_algorithm; typedef MemoryAlgorithm memory_algorithm;
#if !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED) #if !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
@@ -310,6 +311,7 @@ class segment_manager
typedef segment_manager_base<MemoryAlgorithm> segment_manager_base_type; typedef segment_manager_base<MemoryAlgorithm> segment_manager_base_type;
static const size_type PayloadPerAllocation = segment_manager_base_t::PayloadPerAllocation; static const size_type PayloadPerAllocation = segment_manager_base_t::PayloadPerAllocation;
static const size_type MemAlignment = segment_manager_base_t::MemAlignment;
#if !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED) #if !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
private: private:
@@ -698,6 +700,7 @@ class segment_manager
{ {
typedef typename Proxy::object_type object_type; typedef typename Proxy::object_type object_type;
BOOST_CONSTEXPR_OR_CONST std::size_t t_alignment = boost::move_detail::alignment_of<object_type>::value; BOOST_CONSTEXPR_OR_CONST std::size_t t_alignment = boost::move_detail::alignment_of<object_type>::value;
BOOST_CONSTEXPR_OR_CONST std::size_t alloc_alignment = t_alignment > MemAlignment ? t_alignment : MemAlignment;
block_header_t block_info ( size_type(sizeof(object_type)*num) block_header_t block_info ( size_type(sizeof(object_type)*num)
, size_type(t_alignment) , size_type(t_alignment)
, anonymous_type , anonymous_type
@@ -705,7 +708,12 @@ class segment_manager
, 0); , 0);
//Check if there is enough memory //Check if there is enough memory
void *ptr_struct = this->allocate(block_info.total_size(), nothrow<>::get()); const std::size_t total_size = block_info.template total_size<alloc_alignment>();
#if (BOOST_INTERPROCESS_SEGMENT_MANAGER_ABI < 2)
void *ptr_struct = this->allocate(total_size, nothrow<>::get());
#else
void* ptr_struct = this->allocate_aligned(total_size, alloc_alignment, nothrow<>::get());
#endif
if(!ptr_struct){ if(!ptr_struct){
return ipcdetail::null_or_bad_alloc<object_type>(dothrow); return ipcdetail::null_or_bad_alloc<object_type>(dothrow);
} }
@@ -715,7 +723,10 @@ class segment_manager
(ptr_struct, *static_cast<segment_manager_base_type*>(this)); (ptr_struct, *static_cast<segment_manager_base_type*>(this));
//Now construct the header //Now construct the header
block_header_t * hdr = ::new(ptr_struct, boost_container_new_t()) block_header_t(block_info); const std::size_t front_space = block_header_t::template front_space< alloc_alignment, void>();
block_header_t * const hdr = ::new((char*)ptr_struct + front_space, boost_container_new_t()) block_header_t(block_info);
BOOST_ASSERT(is_ptr_aligned(hdr));
void *ptr = 0; //avoid gcc warning void *ptr = 0; //avoid gcc warning
ptr = hdr->value(); ptr = hdr->value();
@@ -724,14 +735,16 @@ class segment_manager
//All constructors successful, disable rollback //All constructors successful, disable rollback
mem.release(); mem.release();
return static_cast<object_type*>(ptr); object_type* const pret = static_cast<object_type*>(ptr);
BOOST_ASSERT(is_ptr_aligned(pret));
return pret;
} }
//!Calls the destructor and makes an anonymous deallocate //!Calls the destructor and makes an anonymous deallocate
template <class T> template <class T>
void priv_anonymous_destroy(const T *object) void priv_anonymous_destroy(const T *object)
{ {
BOOST_ASSERT(is_ptr_aligned(object));
//Get control data from associated with this object //Get control data from associated with this object
block_header_t *ctrl_data = block_header_t::block_header_from_value(object); block_header_t *ctrl_data = block_header_t::block_header_from_value(object);
@@ -745,12 +758,19 @@ class segment_manager
//Call destructors and free memory //Call destructors and free memory
//Build scoped ptr to avoid leaks with destructor exception //Build scoped ptr to avoid leaks with destructor exception
priv_destroy_n(object, ctrl_data->m_value_bytes/sizeof(T)); priv_destroy_n(object, ctrl_data->m_value_bytes/sizeof(T));
this->deallocate(ctrl_data);
BOOST_CONSTEXPR_OR_CONST std::size_t t_alignment =
boost::move_detail::alignment_of<T>::value;
BOOST_CONSTEXPR_OR_CONST std::size_t alloc_alignment =
t_alignment > MemAlignment ? t_alignment : MemAlignment;
const std::size_t front_space = block_header_t::template front_space<alloc_alignment, void>();
this->deallocate((char*)ctrl_data-front_space);
} }
template<class T> template<class T>
void priv_destroy_ptr(const T *ptr) void priv_destroy_ptr(const T *ptr)
{ {
BOOST_ASSERT(is_ptr_aligned(ptr));
block_header_t *ctrl_data = block_header_t::block_header_from_value(ptr); block_header_t *ctrl_data = block_header_t::block_header_from_value(ptr);
switch(ctrl_data->alloc_type()){ switch(ctrl_data->alloc_type()){
case anonymous_type: case anonymous_type:
@@ -909,7 +929,7 @@ class segment_manager
template <class T, class CharT> template <class T, class CharT>
bool priv_generic_named_destroy_impl bool priv_generic_named_destroy_impl
(const typename IndexType<ipcdetail::index_config<CharT, MemoryAlgorithm> >::iterator &it, (typename IndexType<ipcdetail::index_config<CharT, MemoryAlgorithm> >::iterator it,
IndexType<ipcdetail::index_config<CharT, MemoryAlgorithm> > &index) IndexType<ipcdetail::index_config<CharT, MemoryAlgorithm> > &index)
{ {
typedef IndexType<ipcdetail::index_config<CharT, MemoryAlgorithm> > index_t; typedef IndexType<ipcdetail::index_config<CharT, MemoryAlgorithm> > index_t;
@@ -926,13 +946,20 @@ class segment_manager
index.erase(it); index.erase(it);
void *memory; void *memory;
BOOST_CONSTEXPR_OR_CONST std::size_t t_alignment =
boost::move_detail::alignment_of<T>::value;
BOOST_CONSTEXPR_OR_CONST std::size_t alloc_alignment =
t_alignment > MemAlignment ? t_alignment : MemAlignment;
BOOST_IF_CONSTEXPR(is_node_index_t::value || is_intrusive_t::value){ BOOST_IF_CONSTEXPR(is_node_index_t::value || is_intrusive_t::value){
index_data_t*ihdr = block_header_t::template to_first_header<index_data_t>(ctrl_data); index_data_t*ihdr = block_header_t::template to_first_header<index_data_t>(ctrl_data);
const std::size_t front_space = block_header_t::template front_space<alloc_alignment, index_data_t>();
memory = (char*)ihdr - front_space;
ihdr->~index_data_t(); ihdr->~index_data_t();
memory = ihdr;
} }
else{ else{
memory = ctrl_data; const std::size_t front_space = block_header_t::template front_space<alloc_alignment, void>();
memory = (char*)ctrl_data - front_space;
} }
//Call destructors and free memory //Call destructors and free memory
@@ -967,6 +994,7 @@ class segment_manager
typedef typename Proxy::object_type object_type; typedef typename Proxy::object_type object_type;
std::size_t namelen = std::char_traits<CharT>::length(name); std::size_t namelen = std::char_traits<CharT>::length(name);
BOOST_CONSTEXPR_OR_CONST std::size_t t_alignment = boost::move_detail::alignment_of<object_type>::value; BOOST_CONSTEXPR_OR_CONST std::size_t t_alignment = boost::move_detail::alignment_of<object_type>::value;
BOOST_CONSTEXPR_OR_CONST std::size_t alloc_alignment = t_alignment > MemAlignment ? t_alignment: MemAlignment ;
block_header_t block_info ( size_type(sizeof(object_type)*num) block_header_t block_info ( size_type(sizeof(object_type)*num)
, size_type(t_alignment) , size_type(t_alignment)
@@ -1016,23 +1044,40 @@ class segment_manager
//Allocates buffer for name + data, this can throw (it hurts) //Allocates buffer for name + data, this can throw (it hurts)
void *buffer_ptr; void *buffer_ptr;
block_header_t * hdr; block_header_t * hdr;
std::size_t front_space;
//Allocate and construct the headers //Allocate and construct the headers
BOOST_IF_CONSTEXPR(is_node_index_t::value || is_intrusive_t::value){ BOOST_IF_CONSTEXPR(is_node_index_t::value || is_intrusive_t::value){
size_type total_size = block_info.template total_size_with_header<index_data_t>(); const size_type total_size = block_info.template total_size_with_header<alloc_alignment, index_data_t>();
#if (BOOST_INTERPROCESS_SEGMENT_MANAGER_ABI < 2)
buffer_ptr = this->allocate(total_size, nothrow<>::get()); buffer_ptr = this->allocate(total_size, nothrow<>::get());
#else
buffer_ptr = this->allocate_aligned(total_size, alloc_alignment, nothrow<>::get());
#endif
if(!buffer_ptr) if(!buffer_ptr)
return ipcdetail::null_or_bad_alloc<object_type>(dothrow); return ipcdetail::null_or_bad_alloc<object_type>(dothrow);
hdr = block_header_t::template from_first_header<index_data_t>(static_cast<index_data_t*>(buffer_ptr));
front_space = block_header_t::template front_space<alloc_alignment, index_data_t>();
hdr = block_header_t::template from_first_header(reinterpret_cast<index_data_t*>((void*)((char*)buffer_ptr+front_space)));
} }
else{ else{
buffer_ptr = this->allocate(block_info.total_size(), nothrow<>::get()); const size_type total_size = block_info.template total_size<alloc_alignment>();
#if (BOOST_INTERPROCESS_SEGMENT_MANAGER_ABI < 2)
buffer_ptr = this->allocate(total_size, nothrow<>::get());
#else
buffer_ptr = this->allocate_aligned(total_size, alloc_alignment, nothrow<>::get());
#endif
front_space = block_header_t::template front_space<alloc_alignment, void>();
//Check if there is enough memory //Check if there is enough memory
if (!buffer_ptr) if (!buffer_ptr)
return ipcdetail::null_or_bad_alloc<object_type>(dothrow); return ipcdetail::null_or_bad_alloc<object_type>(dothrow);
hdr = static_cast<block_header_t*>(buffer_ptr); hdr = reinterpret_cast<block_header_t*>((void*)((char*)buffer_ptr + front_space));
} }
BOOST_ASSERT(is_ptr_aligned(hdr));
hdr = ::new(hdr, boost_container_new_t()) block_header_t(block_info); hdr = ::new(hdr, boost_container_new_t()) block_header_t(block_info);
//Build scoped ptr to avoid leaks with constructor exception //Build scoped ptr to avoid leaks with constructor exception
@@ -1048,7 +1093,8 @@ class segment_manager
index_it it; index_it it;
BOOST_INTERPROCESS_TRY{ BOOST_INTERPROCESS_TRY{
BOOST_IF_CONSTEXPR(is_node_index_t::value || is_intrusive_t::value) { BOOST_IF_CONSTEXPR(is_node_index_t::value || is_intrusive_t::value) {
index_data_t* index_data = ::new(buffer_ptr, boost_container_new_t()) index_data_t(); index_data_t* index_data = ::new((char*)buffer_ptr + front_space, boost_container_new_t()) index_data_t();
BOOST_ASSERT(is_ptr_aligned(index_data));
it = index.insert_commit(compare_key_t(name_ptr, namelen), hdr, *index_data, commit_data); it = index.insert_commit(compare_key_t(name_ptr, namelen), hdr, *index_data, commit_data);
} }
else{ else{
@@ -1074,7 +1120,9 @@ class segment_manager
//Release rollbacks since construction was successful //Release rollbacks since construction was successful
v_eraser.release(); v_eraser.release();
mem.release(); mem.release();
return static_cast<object_type*>(ptr); object_type* const pret = static_cast<object_type*>(ptr);
BOOST_ASSERT(is_ptr_aligned(pret));
return pret;
} }
private: private:

View File

@@ -8,609 +8,5 @@
// //
////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////
#include <boost/interprocess/indexes/flat_map_index.hpp> #define BOOST_INTERPROCESS_SEGMENT_MANAGER_ABI 2
#include <boost/interprocess/indexes/map_index.hpp> #include "segment_manager_test.hpp"
#include <boost/interprocess/indexes/null_index.hpp>
#include <boost/interprocess/indexes/iset_index.hpp>
#include <boost/interprocess/indexes/iunordered_set_index.hpp>
#include <boost/interprocess/mem_algo/simple_seq_fit.hpp>
#include <boost/interprocess/mem_algo/rbtree_best_fit.hpp>
#include <boost/interprocess/mapped_region.hpp>
#include <boost/interprocess/segment_manager.hpp>
#include <boost/interprocess/shared_memory_object.hpp>
#include <boost/interprocess/sync/mutex_family.hpp>
#include <boost/interprocess/exceptions.hpp>
#include "get_process_id_name.hpp"
#include <cstddef>
#include <new>
#include <cstring>
#include <typeinfo>
using namespace boost::interprocess;
template <class SegmentManager>
struct atomic_func_test
{
SegmentManager &rsm;
int *object;
atomic_func_test(SegmentManager &sm)
: rsm(sm), object()
{}
void operator()()
{
object = rsm.template find<int>("atomic_func_find_object").first;
}
private:
atomic_func_test operator=(const atomic_func_test&);
atomic_func_test(const atomic_func_test&);
};
template <class SegmentManager>
bool test_allocate_deallocate(SegmentManager* seg_mgr, mapped_region& mapping)
{
typedef typename SegmentManager::size_type size_type;
{//test get_free_memory() / allocate()/deallocate()
const std::size_t free_mem_before = seg_mgr->get_free_memory();
const std::size_t MappedRegionSize = mapping.get_size();
const size_type Size = MappedRegionSize / 2;
void* mem = seg_mgr->allocate(Size + 1);
const size_type free_mem = seg_mgr->get_free_memory();
if (free_mem >= Size)
return false;
if (seg_mgr->all_memory_deallocated())
return false;
const size_type Size2 = free_mem / 2;
void* mem2 = seg_mgr->allocate(size_type(Size2 + 1), std::nothrow);
if (seg_mgr->get_free_memory() >= Size2)
return false;
if (seg_mgr->size(mem) < (Size + 1))
return false;
if (seg_mgr->size(mem2) < (Size2 + 1))
return false;
seg_mgr->deallocate(mem);
seg_mgr->deallocate(mem2);
if (!seg_mgr->all_memory_deallocated())
return false;
if (seg_mgr->get_free_memory() != free_mem_before)
return false;
BOOST_INTERPROCESS_TRY{ seg_mgr->allocate(MappedRegionSize * 2); }
BOOST_INTERPROCESS_CATCH(interprocess_exception&) {}
BOOST_INTERPROCESS_CATCH_END
if (seg_mgr->get_free_memory() != free_mem_before)
return false;
if (seg_mgr->allocate(MappedRegionSize * 2, std::nothrow))
return false;
if (seg_mgr->get_free_memory() != free_mem_before)
return false;
}
return true;
}
template <class SegmentManager>
bool test_allocate_aligned(SegmentManager* seg_mgr, mapped_region& mapping)
{
const std::size_t MappedRegionSize = mapping.get_size();
const std::size_t free_mem_before = seg_mgr->get_free_memory();
const std::size_t InitialAlignment = SegmentManager::memory_algorithm::Alignment;
const std::size_t RegionAlignment = mapped_region::get_page_size();
for( std::size_t alignment = InitialAlignment
; (alignment <= MappedRegionSize/8 && alignment <= RegionAlignment/4)
; alignment <<= 1u) {
//Allocate two buffers and test the alignment inside the mapped region
void *mem = seg_mgr->allocate_aligned(MappedRegionSize/8, alignment);
if(seg_mgr->all_memory_deallocated())
return false;
std::size_t offset = static_cast<std::size_t>
(static_cast<const char *>(mem) - static_cast<const char *>(mapping.get_address()));
if(offset & (alignment -1))
return false;
void *mem2 = seg_mgr->allocate_aligned(MappedRegionSize/4, alignment, std::nothrow);
std::size_t offset2 = static_cast<std::size_t>
(static_cast<const char *>(mem2) - static_cast<const char *>(mapping.get_address()));
if(offset2 & (alignment -1))
return false;
//Deallocate them
seg_mgr->deallocate(mem);
seg_mgr->deallocate(mem2);
if(!seg_mgr->all_memory_deallocated())
return false;
if(seg_mgr->get_free_memory() != free_mem_before)
return false;
//Try an imposible size to test error is signalled
bool allocate_aligned_throws = false;
BOOST_INTERPROCESS_TRY{ seg_mgr->allocate_aligned(MappedRegionSize*2, alignment); }
BOOST_INTERPROCESS_CATCH(interprocess_exception&){ allocate_aligned_throws = true; }
BOOST_INTERPROCESS_CATCH_END
if (!allocate_aligned_throws)
return false;
if (seg_mgr->allocate_aligned(MappedRegionSize*2, alignment, std::nothrow))
return false;
if(seg_mgr->get_free_memory() != free_mem_before)
return false;
if(seg_mgr->allocate_aligned(MappedRegionSize*2, alignment, std::nothrow))
return false;
if(seg_mgr->get_free_memory() != free_mem_before)
return false;
}
return true;
}
template <class SegmentManager>
bool test_shrink_to_fit(SegmentManager* seg_mgr, mapped_region &)
{
typedef typename SegmentManager::size_type size_type;
const std::size_t free_mem_before = seg_mgr->get_free_memory();
std::size_t size_before = seg_mgr->get_size();
seg_mgr->shrink_to_fit();
if (!seg_mgr->all_memory_deallocated())
return false;
std::size_t empty_shrunk_size = seg_mgr->get_size();
std::size_t empty_shrunk_free_mem = seg_mgr->get_free_memory();
if (empty_shrunk_size >= size_before)
return false;
if (empty_shrunk_free_mem >= size_before)
return false;
seg_mgr->grow(size_type(size_before - empty_shrunk_size));
if (seg_mgr->get_size() != size_before)
return false;
if (seg_mgr->get_free_memory() != free_mem_before)
return false;
if (!seg_mgr->all_memory_deallocated())
return false;
return true;
}
template <class SegmentManager>
bool test_zero_free_memory(SegmentManager* seg_mgr, mapped_region &mapping)
{
typedef typename SegmentManager::size_type size_type;
const std::size_t MappedRegionSize = mapping.get_size();
const std::size_t free_mem_before = seg_mgr->get_free_memory();
const size_type Size(MappedRegionSize / 2 + 1), Size2(MappedRegionSize / 8);
void* mem = seg_mgr->allocate(Size);
void* mem2 = seg_mgr->allocate(Size2);
//Mark memory to non-zero
std::memset(mem, 0xFF, Size);
std::memset(mem2, 0xFF, Size2);
//Deallocate and check still non-zero
seg_mgr->deallocate(mem);
seg_mgr->deallocate(mem2);
{ //Use byte per byte comparison as "static unsigned char zerobuf[Size]"
//seems to be problematic in some compilers
unsigned char* const mem_uch_ptr = static_cast<unsigned char*>(mem);
unsigned char* const mem2_uch_ptr = static_cast<unsigned char*>(mem2);
size_type zeroes = 0;
for (size_type i = 0; i != Size; ++i) {
if (!mem_uch_ptr[i])
++zeroes;
}
if (zeroes == Size)
return false;
zeroes = 0;
for (size_type i = 0; i != Size2; ++i) {
if (!mem2_uch_ptr[i])
++zeroes;
}
if (zeroes == Size2)
return false;
}
//zero_free_memory and check it's zeroed
seg_mgr->zero_free_memory();
//TODO: some parts are not zeroed because they are used
//as internal metadata, find a way to test this
//if(std::memcmp(mem, zerobuf, Size))
//return false;
//if(std::memcmp(mem2, zerobuf, Size2))
//return false;
if (seg_mgr->get_free_memory() != free_mem_before)
return false;
if (!seg_mgr->all_memory_deallocated())
return false;
return true;
}
template <class SegmentManager>
bool test_anoymous_object(SegmentManager* seg_mgr, mapped_region& mapping)
{
const std::size_t MappedRegionSize = mapping.get_size();
const std::size_t free_mem_before = seg_mgr->get_free_memory();
int* int_object = seg_mgr->template construct<int>(anonymous_instance)();
if (1 != seg_mgr->get_instance_length(int_object))
return false;
if (anonymous_type != seg_mgr->get_instance_type(int_object))
return false;
if (seg_mgr->get_instance_name(int_object))
return false;
seg_mgr->destroy_ptr(int_object);
int const int_array_values[10] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };
int* int_array = seg_mgr->template construct_it<int>(anonymous_instance, std::nothrow)[10](&int_array_values[0]);
if (10 != seg_mgr->get_instance_length(int_object))
return false;
if (anonymous_type != seg_mgr->get_instance_type(int_array))
return false;
if (seg_mgr->get_instance_name(int_array))
return false;
seg_mgr->destroy_ptr(int_array);
BOOST_INTERPROCESS_TRY{ seg_mgr->template construct<int>(anonymous_instance)[MappedRegionSize](); }
BOOST_INTERPROCESS_CATCH(interprocess_exception&) {}
BOOST_INTERPROCESS_CATCH_END
if (seg_mgr->template construct<int>(anonymous_instance, std::nothrow)[MappedRegionSize]())
BOOST_INTERPROCESS_TRY{ seg_mgr->template construct_it<long int>(anonymous_instance)[MappedRegionSize](&int_array_values[0]); }
BOOST_INTERPROCESS_CATCH(interprocess_exception&) {}
BOOST_INTERPROCESS_CATCH_END
if (seg_mgr->template construct_it<int>(anonymous_instance, std::nothrow)[MappedRegionSize](&int_array_values[0]))
return false;
if (seg_mgr->get_free_memory() != free_mem_before)
return false;
if (!seg_mgr->all_memory_deallocated())
return false;
return true;
}
template <class SegmentManager>
bool test_named_object(SegmentManager* seg_mgr, mapped_region& mapping)
{
const std::size_t MappedRegionSize = mapping.get_size();
const std::size_t free_mem_before = seg_mgr->get_free_memory();
const char* const object1_name = "object1";
const char* const object2_name = "object2";
int const int_array_values[10] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };
for (std::size_t i = 0; i != 4; ++i) {
if (seg_mgr->template find<unsigned int>(object1_name).first)
return false;
//Single element construction
unsigned int* uint_object = 0;
switch (i) {
case 0:
uint_object = seg_mgr->template construct<unsigned int>(object1_name)();
break;
case 1:
uint_object = seg_mgr->template construct<unsigned int>(object1_name, std::nothrow)();
break;
case 2:
uint_object = seg_mgr->template find_or_construct<unsigned int>(object1_name)();
break;
case 3:
uint_object = seg_mgr->template find_or_construct<unsigned int>(object1_name, std::nothrow)();
break;
}
std::pair<unsigned int*, std::size_t> find_ret = seg_mgr->template find<unsigned int>(object1_name);
if (uint_object != find_ret.first)
return false;
if (1 != find_ret.second)
return false;
if (1 != seg_mgr->get_instance_length(uint_object))
return false;
if (named_type != seg_mgr->get_instance_type(uint_object))
return false;
if (std::strcmp(object1_name, seg_mgr->get_instance_name(uint_object)))
return false;
//Array construction
if (seg_mgr->template find<int>(object2_name).first)
return false;
int* int_array = 0;
switch (i) {
case 0:
int_array = seg_mgr->template construct_it<int>(object2_name)[10](&int_array_values[0]);
break;
case 1:
int_array = seg_mgr->template construct_it<int>(object2_name, std::nothrow)[10](&int_array_values[0]);
break;
case 2:
int_array = seg_mgr->template find_or_construct_it<int>(object2_name)[10](&int_array_values[0]);
break;
case 3:
int_array = seg_mgr->template find_or_construct_it<int>(object2_name, std::nothrow)[10](&int_array_values[0]);
break;
}
std::pair<int*, std::size_t> find_ret2 = seg_mgr->template find<int>(object2_name);
if (int_array != find_ret2.first)
return false;
if (10 != find_ret2.second)
return false;
if (10 != seg_mgr->get_instance_length(int_array))
return false;
if (named_type != seg_mgr->get_instance_type(int_array))
return false;
if (std::strcmp(object2_name, seg_mgr->get_instance_name(int_array)))
return false;
if (seg_mgr->get_num_named_objects() != 2)
return false;
typename SegmentManager::const_named_iterator nb(seg_mgr->named_begin());
typename SegmentManager::const_named_iterator ne(seg_mgr->named_end());
for (std::size_t j = 0, imax = seg_mgr->get_num_named_objects(); j != imax; ++j) { ++nb; }
if (nb != ne)
return false;
seg_mgr->destroy_ptr(uint_object);
seg_mgr->template destroy<int>(object2_name);
}
BOOST_INTERPROCESS_TRY{ seg_mgr->template construct<unsigned int>(object1_name)[MappedRegionSize](); }
BOOST_INTERPROCESS_CATCH(interprocess_exception&) {}
BOOST_INTERPROCESS_CATCH_END
if (seg_mgr->template construct<int>(object2_name, std::nothrow)[MappedRegionSize]())
BOOST_INTERPROCESS_TRY{ seg_mgr->template construct_it<int>(object1_name)[MappedRegionSize](&int_array_values[0]); }
BOOST_INTERPROCESS_CATCH(interprocess_exception&) {}
BOOST_INTERPROCESS_CATCH_END
if (seg_mgr->template construct_it<int>(object2_name, std::nothrow)[MappedRegionSize](&int_array_values[0]))
return false;
seg_mgr->shrink_to_fit_indexes();
if (seg_mgr->get_free_memory() != free_mem_before)
return false;
if (!seg_mgr->all_memory_deallocated())
return false;
seg_mgr->reserve_named_objects(1);
//In indexes with no capacity() memory won't be allocated so don't check anything was allocated.
//if(seg_mgr->all_memory_deallocated()) return false;
seg_mgr->shrink_to_fit_indexes();
if (!seg_mgr->all_memory_deallocated())
return false;
return true;
}
template <class SegmentManager>
bool test_unique_object(SegmentManager* seg_mgr, mapped_region& mapping)
{
const std::size_t MappedRegionSize = mapping.get_size();
const std::size_t free_mem_before = seg_mgr->get_free_memory();
int const int_array_values[10] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };
for (std::size_t i = 0; i != 4; ++i) {
if (seg_mgr->template find<unsigned int>(unique_instance).first)
return false;
//Single element construction
unsigned int* uint_object = 0;
switch (i) {
case 0:
uint_object = seg_mgr->template construct<unsigned int>(unique_instance)();
break;
case 1:
uint_object = seg_mgr->template construct<unsigned int>(unique_instance, std::nothrow)();
break;
case 2:
uint_object = seg_mgr->template find_or_construct<unsigned int>(unique_instance)();
break;
case 3:
uint_object = seg_mgr->template find_or_construct<unsigned int>(unique_instance, std::nothrow)();
break;
}
std::pair<unsigned int*, std::size_t> find_ret = seg_mgr->template find<unsigned int>(unique_instance);
if (uint_object != find_ret.first)
return false;
if (1 != find_ret.second)
return false;
if (1 != seg_mgr->get_instance_length(uint_object))
return false;
if (unique_type != seg_mgr->get_instance_type(uint_object))
return false;
if (std::strcmp(typeid(unsigned int).name(), seg_mgr->get_instance_name(uint_object)))
return false;
//Array construction
if (seg_mgr->template find<int>(unique_instance).first)
return false;
int* int_array = 0;
switch (i) {
case 0:
int_array = seg_mgr->template construct_it<int>(unique_instance)[10](&int_array_values[0]);
break;
case 1:
int_array = seg_mgr->template construct_it<int>(unique_instance, std::nothrow)[10](&int_array_values[0]);
break;
case 2:
int_array = seg_mgr->template find_or_construct_it<int>(unique_instance)[10](&int_array_values[0]);
break;
case 3:
int_array = seg_mgr->template find_or_construct_it<int>(unique_instance, std::nothrow)[10](&int_array_values[0]);
break;
}
std::pair<int*, std::size_t> find_ret2 = seg_mgr->template find<int>(unique_instance);
if (int_array != find_ret2.first)
return false;
if (10 != find_ret2.second)
return false;
if (10 != seg_mgr->get_instance_length(int_array))
return false;
if (unique_type != seg_mgr->get_instance_type(int_array))
return false;
if (std::strcmp(typeid(int).name(), seg_mgr->get_instance_name(int_array)))
return false;
if (seg_mgr->get_num_unique_objects() != 2)
return false;
typename SegmentManager::const_unique_iterator nb(seg_mgr->unique_begin());
typename SegmentManager::const_unique_iterator ne(seg_mgr->unique_end());
for (std::size_t j = 0, imax = seg_mgr->get_num_unique_objects(); j != imax; ++j) { ++nb; }
if (nb != ne)
return false;
seg_mgr->destroy_ptr(uint_object);
seg_mgr->template destroy<int>(unique_instance);
}
BOOST_INTERPROCESS_TRY{ seg_mgr->template construct<unsigned int>(unique_instance)[MappedRegionSize](); }
BOOST_INTERPROCESS_CATCH(interprocess_exception&) {}
BOOST_INTERPROCESS_CATCH_END
if (seg_mgr->template construct<int>(unique_instance, std::nothrow)[MappedRegionSize]())
BOOST_INTERPROCESS_TRY{ seg_mgr->template construct_it<long int>(unique_instance)[MappedRegionSize](&int_array_values[0]); }
BOOST_INTERPROCESS_CATCH(interprocess_exception&) {}
BOOST_INTERPROCESS_CATCH_END
if (seg_mgr->template construct_it<int>(unique_instance, std::nothrow)[MappedRegionSize](&int_array_values[0]))
return false;
seg_mgr->shrink_to_fit_indexes();
if (seg_mgr->get_free_memory() != free_mem_before)
return false;
if (!seg_mgr->all_memory_deallocated())
return false;
seg_mgr->reserve_unique_objects(1);
//In indexes with no capacity() memory won't be allocated so don't check anything was allocated.
//if(seg_mgr->all_memory_deallocated()) return false;
seg_mgr->shrink_to_fit_indexes();
if (!seg_mgr->all_memory_deallocated())
return false;
return true;
}
template <class SegmentManager>
bool test_atomic_func(SegmentManager* seg_mgr, mapped_region& )
{
if (!seg_mgr->all_memory_deallocated())
return false;
int* int_object = seg_mgr->template construct<int>("atomic_func_find_object")();
atomic_func_test<SegmentManager> func(*seg_mgr);
seg_mgr->atomic_func(func);
if (int_object != func.object)
return 1;
seg_mgr->destroy_ptr(int_object);
seg_mgr->shrink_to_fit_indexes();
if (!seg_mgr->all_memory_deallocated())
return false;
return true;
}
template <class SegmentManager>
bool test_allocator_deleter(SegmentManager* seg_mgr, mapped_region&)
{//test allocator/deleter
if (!seg_mgr->all_memory_deallocated())
return false;
typedef typename SegmentManager::template allocator<float>::type allocator_t;
allocator_t alloc(seg_mgr->template get_allocator<float>());
if (!seg_mgr->all_memory_deallocated())
return false;
offset_ptr<float> f = alloc.allocate(50);
if (seg_mgr->all_memory_deallocated())
return false;
alloc.deallocate(f, 50);
if (!seg_mgr->all_memory_deallocated())
return false;
typedef typename SegmentManager::template deleter<float>::type deleter_t;
deleter_t delet(seg_mgr->template get_deleter<float>());
delet(seg_mgr->template construct<float>(anonymous_instance)());
if (!seg_mgr->all_memory_deallocated())
return false;
return true;
}
template <class SegmentManager>
bool test_get_memory_algorithm(SegmentManager* seg_mgr, mapped_region&)
{
{
typename SegmentManager::memory_algorithm& mem_algo =
seg_mgr->get_memory_algorithm();
const typename SegmentManager::memory_algorithm& const_mem_algo =
const_cast<const SegmentManager*>(seg_mgr)->get_memory_algorithm();
if (&mem_algo != &const_mem_algo)
return false;
}
return true;
}
template <class SegmentManager>
bool test_segment_manager()
{
const unsigned int MappedRegionSize = 1024*64u;
std::string shmname(test::get_process_id_name());
shared_memory_object::remove(shmname.c_str());
shared_memory_object sh_mem( create_only, shmname.c_str(), read_write );
sh_mem.truncate( MappedRegionSize );
mapped_region mapping( sh_mem, read_write );
//Remove shared memory to minimize risk of garbage on crash
shared_memory_object::remove(shmname.c_str());
SegmentManager* seg_mgr = new( mapping.get_address() ) SegmentManager( MappedRegionSize );
std::size_t size_before = seg_mgr->get_size();
if(size_before != MappedRegionSize)
return false;
if(!seg_mgr->all_memory_deallocated())
return false;
if(seg_mgr->get_min_size() >= MappedRegionSize)
return false;
if (!test_allocate_deallocate(seg_mgr, mapping))
return false;
if (!test_allocate_aligned(seg_mgr, mapping))
return false;
if (!test_shrink_to_fit(seg_mgr, mapping))
return false;
if (!test_zero_free_memory(seg_mgr, mapping))
return false;
if (!test_anoymous_object(seg_mgr, mapping))
return false;
if (!test_named_object(seg_mgr, mapping))
return false;
if (!test_unique_object(seg_mgr, mapping))
return false;
if (!test_allocator_deleter(seg_mgr, mapping))
return false;
if (!test_atomic_func(seg_mgr, mapping))
return false;
if (!test_allocator_deleter(seg_mgr, mapping))
return false;
if (!test_get_memory_algorithm(seg_mgr, mapping))
return false;
return true;
}
template<class MemoryAlgorithm>
bool test_each_algo()
{
{
typedef segment_manager< char, MemoryAlgorithm, flat_map_index > segment_manager_t;
if(!test_segment_manager<segment_manager_t>())
return false;
}
{
typedef segment_manager< char, MemoryAlgorithm, map_index > segment_manager_t;
if(!test_segment_manager<segment_manager_t>())
return false;
}
{
typedef segment_manager< char, MemoryAlgorithm, iset_index > segment_manager_t;
if(!test_segment_manager<segment_manager_t>())
return false;
}
{
typedef segment_manager< char, MemoryAlgorithm, iunordered_set_index > segment_manager_t;
if(!test_segment_manager<segment_manager_t>())
return false;
}
return true;
}
int main()
{
if(!test_each_algo< simple_seq_fit< null_mutex_family > >())
return 1;
if(!test_each_algo< rbtree_best_fit< null_mutex_family > >())
return 1;
return 0;
}

View File

@@ -0,0 +1,860 @@
//////////////////////////////////////////////////////////////////////////////
//
// (C) Copyright Ion Gaztanaga 2004-2019. Distributed under the Boost
// Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
// See http://www.boost.org/libs/interprocess for documentation.
//
//////////////////////////////////////////////////////////////////////////////
#include <boost/interprocess/indexes/flat_map_index.hpp>
#include <boost/interprocess/indexes/map_index.hpp>
#include <boost/interprocess/indexes/null_index.hpp>
#include <boost/interprocess/indexes/iset_index.hpp>
#include <boost/interprocess/indexes/iunordered_set_index.hpp>
#include <boost/interprocess/mem_algo/simple_seq_fit.hpp>
#include <boost/interprocess/mem_algo/rbtree_best_fit.hpp>
#include <boost/interprocess/mapped_region.hpp>
#include <boost/interprocess/segment_manager.hpp>
#include <boost/interprocess/shared_memory_object.hpp>
#include <boost/interprocess/sync/mutex_family.hpp>
#include <boost/interprocess/exceptions.hpp>
#include <boost/interprocess/detail/utilities.hpp>
#include "get_process_id_name.hpp"
#include <cstddef>
#include <new>
#include <cstring>
#include <typeinfo>
#include <iostream>
using namespace boost::interprocess;
template<std::size_t Align>
struct IntLike;
#define BOOST_INTERPROCESS_ALIGNED_INTLIKE(A)\
template<>\
struct IntLike<A>\
{\
IntLike(){}\
\
IntLike(int i) : data(i) {}\
\
BOOST_ALIGNMENT(A) int data;\
\
operator int() const { return data; }\
};\
//
//Up to 4K alignment (typical page size)
BOOST_INTERPROCESS_ALIGNED_INTLIKE(16)
BOOST_INTERPROCESS_ALIGNED_INTLIKE(32)
BOOST_INTERPROCESS_ALIGNED_INTLIKE(64)
BOOST_INTERPROCESS_ALIGNED_INTLIKE(128)
BOOST_INTERPROCESS_ALIGNED_INTLIKE(256)
#undef BOOST_INTERPROCESS_ALIGNED_INTLIKE
template <class SegmentManager>
struct atomic_func_test
{
SegmentManager &rsm;
int *object;
atomic_func_test(SegmentManager &sm)
: rsm(sm), object()
{}
void operator()()
{
object = rsm.template find<int>("atomic_func_find_object").first;
}
private:
atomic_func_test operator=(const atomic_func_test&);
atomic_func_test(const atomic_func_test&);
};
template <class SegmentManager>
bool test_allocate_deallocate(SegmentManager* seg_mgr, mapped_region& mapping)
{
typedef typename SegmentManager::size_type size_type;
const std::size_t MappedRegionSize = mapping.get_size();
for (std::size_t size = 1; size <= (MappedRegionSize / 2); size <<= 1 ) {
const std::size_t free_mem_before = seg_mgr->get_free_memory();
//Allocate memory
void* mem = seg_mgr->allocate(size + 1);
const size_type free_mem = seg_mgr->get_free_memory();
if (free_mem >= (free_mem_before-size))
return false;
if (seg_mgr->all_memory_deallocated())
return false;
//Allocate half of the rest
const size_type Size2 = free_mem / 2;
void* mem2 = seg_mgr->allocate(size_type(Size2 + 1), std::nothrow);
//Sanity checks
if (seg_mgr->get_free_memory() >= Size2)
return false;
if (seg_mgr->size(mem) < (size + 1))
return false;
if (seg_mgr->size(mem2) < (Size2 + 1))
return false;
//Deallocate both
seg_mgr->deallocate(mem);
seg_mgr->deallocate(mem2);
//Sanity checks again
if (!seg_mgr->all_memory_deallocated())
return false;
if (seg_mgr->get_free_memory() != free_mem_before)
return false;
//Try an imposible size to test error is signalled
bool operation_throws = false;
BOOST_INTERPROCESS_TRY{ seg_mgr->allocate(MappedRegionSize * 2); }
BOOST_INTERPROCESS_CATCH(interprocess_exception&) { operation_throws = true; }
BOOST_INTERPROCESS_CATCH_END
if (!operation_throws)
return false;
if (seg_mgr->get_free_memory() != free_mem_before)
return false;
if (seg_mgr->allocate(MappedRegionSize*2u, std::nothrow))
return false;
if (seg_mgr->get_free_memory() != free_mem_before)
return false;
}
return true;
}
template <class SegmentManager>
bool test_allocate_aligned(SegmentManager* seg_mgr, mapped_region& mapping)
{
const std::size_t MappedRegionSize = mapping.get_size();
const std::size_t free_mem_before = seg_mgr->get_free_memory();
const std::size_t InitialAlignment = SegmentManager::memory_algorithm::Alignment;
const std::size_t RegionAlignment = mapped_region::get_page_size();
for( std::size_t alignment = InitialAlignment
; (alignment <= MappedRegionSize/8 && alignment <= RegionAlignment/4)
; alignment <<= 1u) {
//Allocate two buffers and test the alignment inside the mapped region
void *mem = seg_mgr->allocate_aligned(MappedRegionSize/8, alignment);
if(seg_mgr->all_memory_deallocated())
return false;
std::size_t offset = static_cast<std::size_t>
(static_cast<const char *>(mem) - static_cast<const char *>(mapping.get_address()));
if(offset & (alignment -1))
return false;
void *mem2 = seg_mgr->allocate_aligned(MappedRegionSize/4, alignment, std::nothrow);
std::size_t offset2 = static_cast<std::size_t>
(static_cast<const char *>(mem2) - static_cast<const char *>(mapping.get_address()));
if(offset2 & (alignment -1))
return false;
//Deallocate them
seg_mgr->deallocate(mem);
seg_mgr->deallocate(mem2);
if(!seg_mgr->all_memory_deallocated())
return false;
if(seg_mgr->get_free_memory() != free_mem_before)
return false;
//Try an imposible size to test error is signalled
bool operation_throws = false;
BOOST_INTERPROCESS_TRY{ seg_mgr->allocate_aligned(MappedRegionSize*2, alignment); }
BOOST_INTERPROCESS_CATCH(interprocess_exception&){ operation_throws = true; }
BOOST_INTERPROCESS_CATCH_END
if (!operation_throws)
return false;
if (seg_mgr->allocate_aligned(MappedRegionSize*2, alignment, std::nothrow))
return false;
if(seg_mgr->get_free_memory() != free_mem_before)
return false;
if(seg_mgr->allocate_aligned(MappedRegionSize*2, alignment, std::nothrow))
return false;
if(seg_mgr->get_free_memory() != free_mem_before)
return false;
}
return true;
}
template <class SegmentManager>
bool test_shrink_to_fit(SegmentManager* seg_mgr, mapped_region &)
{
typedef typename SegmentManager::size_type size_type;
const std::size_t free_mem_before = seg_mgr->get_free_memory();
std::size_t size_before = seg_mgr->get_size();
seg_mgr->shrink_to_fit();
if (!seg_mgr->all_memory_deallocated())
return false;
std::size_t empty_shrunk_size = seg_mgr->get_size();
std::size_t empty_shrunk_free_mem = seg_mgr->get_free_memory();
if (empty_shrunk_size >= size_before)
return false;
if (empty_shrunk_free_mem >= size_before)
return false;
seg_mgr->grow(size_type(size_before - empty_shrunk_size));
if (seg_mgr->get_size() != size_before)
return false;
if (seg_mgr->get_free_memory() != free_mem_before)
return false;
if (!seg_mgr->all_memory_deallocated())
return false;
return true;
}
template <class SegmentManager>
bool test_zero_free_memory(SegmentManager* seg_mgr, mapped_region &mapping)
{
typedef typename SegmentManager::size_type size_type;
const std::size_t MappedRegionSize = mapping.get_size();
const std::size_t free_mem_before = seg_mgr->get_free_memory();
const size_type Size(MappedRegionSize / 2 + 1), Size2(MappedRegionSize / 8);
void* mem = seg_mgr->allocate(Size);
void* mem2 = seg_mgr->allocate(Size2);
//Mark memory to non-zero
std::memset(mem, 0xFF, Size);
std::memset(mem2, 0xFF, Size2);
//Deallocate and check still non-zero
seg_mgr->deallocate(mem);
seg_mgr->deallocate(mem2);
{ //Use byte per byte comparison as "static unsigned char zerobuf[Size]"
//seems to be problematic in some compilers
unsigned char* const mem_uch_ptr = static_cast<unsigned char*>(mem);
unsigned char* const mem2_uch_ptr = static_cast<unsigned char*>(mem2);
size_type zeroes = 0;
for (size_type i = 0; i != Size; ++i) {
if (!mem_uch_ptr[i])
++zeroes;
}
if (zeroes == Size)
return false;
zeroes = 0;
for (size_type i = 0; i != Size2; ++i) {
if (!mem2_uch_ptr[i])
++zeroes;
}
if (zeroes == Size2)
return false;
}
//zero_free_memory and check it's zeroed
seg_mgr->zero_free_memory();
//TODO: some parts are not zeroed because they are used
//as internal metadata, find a way to test this
//if(std::memcmp(mem, zerobuf, Size))
//return false;
//if(std::memcmp(mem2, zerobuf, Size2))
//return false;
if (seg_mgr->get_free_memory() != free_mem_before)
return false;
if (!seg_mgr->all_memory_deallocated())
return false;
return true;
}
template <class IntLike, class SegmentManager>
bool test_anonymous_object_type(SegmentManager* seg_mgr, mapped_region& mapping)
{
const std::size_t MappedRegionSize = mapping.get_size();
const std::size_t free_mem_before = seg_mgr->get_free_memory();
//Construct single object
{
IntLike* int_object = seg_mgr->template construct<IntLike>(anonymous_instance)();
BOOST_ASSERT(is_ptr_aligned(int_object, boost::move_detail::alignment_of<IntLike>::value));
if (!is_ptr_aligned(int_object, boost::move_detail::alignment_of<IntLike>::value))
return false;
if (1 != seg_mgr->get_instance_length(int_object))
return false;
if (anonymous_type != seg_mgr->get_instance_type(int_object))
return false;
if (seg_mgr->get_instance_name(int_object))
return false;
seg_mgr->destroy_ptr(int_object);
}
{
//Construct array object
IntLike* int_array = seg_mgr->template construct_it<IntLike>(anonymous_instance, std::nothrow)[5]();
BOOST_ASSERT(is_ptr_aligned(int_array, boost::move_detail::alignment_of<IntLike>::value));
if (!is_ptr_aligned(int_array, boost::move_detail::alignment_of<IntLike>::value))
return false;
if (5 != seg_mgr->get_instance_length(int_array))
return false;
if (anonymous_type != seg_mgr->get_instance_type(int_array))
return false;
if (seg_mgr->get_instance_name(int_array))
return false;
seg_mgr->destroy_ptr(int_array);
}
{
//Construct array object from it
const signed char int_array_values[10] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };
IntLike* int_array = seg_mgr->template construct_it<IntLike>(anonymous_instance, std::nothrow)[10](&int_array_values[0]);
BOOST_ASSERT(is_ptr_aligned(int_array, boost::move_detail::alignment_of<IntLike>::value));
if (!is_ptr_aligned(int_array, boost::move_detail::alignment_of<IntLike>::value))
return false;
if (10 != seg_mgr->get_instance_length(int_array))
return false;
if (anonymous_type != seg_mgr->get_instance_type(int_array))
return false;
if (seg_mgr->get_instance_name(int_array))
return false;
seg_mgr->destroy_ptr(int_array);
}
//Try an imposible size to test error is signalled
{
bool operation_throws = false;
BOOST_INTERPROCESS_TRY{ seg_mgr->template construct<IntLike>(anonymous_instance)[MappedRegionSize](); }
BOOST_INTERPROCESS_CATCH(interprocess_exception&) { operation_throws = true; }
BOOST_INTERPROCESS_CATCH_END
if (!operation_throws)
return false;
if (seg_mgr->get_free_memory() != free_mem_before)
return false;
}
{
if (seg_mgr->template construct<IntLike>(anonymous_instance, std::nothrow)[MappedRegionSize]())
if (seg_mgr->get_free_memory() != free_mem_before)
return false;
}
{
const signed char int_array_values[10] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };
if (seg_mgr->template construct_it<IntLike>(anonymous_instance, std::nothrow)[MappedRegionSize](&int_array_values[0]))
return false;
if (seg_mgr->get_free_memory() != free_mem_before)
return false;
}
if (!seg_mgr->all_memory_deallocated())
return false;
return true;
}
template <class SegmentManager>
bool test_anonymous_object(SegmentManager* seg_mgr, mapped_region& mapping)
{
if (!test_anonymous_object_type<signed char>(seg_mgr, mapping))
return false;
if (!test_anonymous_object_type<short int>(seg_mgr, mapping))
return false;
if (!test_anonymous_object_type<int>(seg_mgr, mapping))
return false;
if (!test_anonymous_object_type<long int>(seg_mgr, mapping))
return false;
#if (BOOST_INTERPROCESS_SEGMENT_MANAGER_ABI >= 2)
if (!test_anonymous_object_type<long long int>(seg_mgr, mapping))
return false;
if (!test_anonymous_object_type<IntLike<16> >(seg_mgr, mapping))
return false;
if (!test_anonymous_object_type<IntLike<32> >(seg_mgr, mapping))
return false;
if (!test_anonymous_object_type<IntLike<64> >(seg_mgr, mapping))
return false;
if (!test_anonymous_object_type<IntLike<128> >(seg_mgr, mapping))
return false;
#endif //#if (BOOST_INTERPROCESS_SEGMENT_MANAGER_ABI >= 2)
return true;
}
template <class IntLike, class SegmentManager>
bool test_named_object_type(SegmentManager* seg_mgr, mapped_region& mapping)
{
const std::size_t MappedRegionSize = mapping.get_size();
const std::size_t free_mem_before = seg_mgr->get_free_memory();
const char* const object1_name = "object1";
const char* const object2_name = "object2";
const signed char int_array_values[10] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };
for (std::size_t i = 0; i != 4; ++i) {
if (seg_mgr->template find<IntLike>(object1_name).first)
return false;
//Single element construction
IntLike* int_object = 0;
switch (i) {
case 0:
int_object = seg_mgr->template construct<IntLike>(object1_name)();
break;
case 1:
int_object = seg_mgr->template construct<IntLike>(object1_name, std::nothrow)();
break;
case 2:
int_object = seg_mgr->template find_or_construct<IntLike>(object1_name)();
break;
case 3:
int_object = seg_mgr->template find_or_construct<IntLike>(object1_name, std::nothrow)();
break;
}
if (!is_ptr_aligned(int_object, boost::move_detail::alignment_of<IntLike>::value)){
std::cout << "\ntype/alignment: " << typeid(IntLike).name() << "/" << boost::move_detail::alignment_of<IntLike>::value << "\n segment_manager: " << typeid(SegmentManager).name()
<< "\nmem alignment: " << SegmentManager::memory_algorithm::Alignment <<std::endl;
return false;
}
std::pair<IntLike*, std::size_t> find_ret = seg_mgr->template find<IntLike>(object1_name);
if (int_object != find_ret.first)
return false;
if (1 != find_ret.second)
return false;
if (1 != seg_mgr->get_instance_length(int_object))
return false;
if (named_type != seg_mgr->get_instance_type(int_object))
return false;
if (std::strcmp(object1_name, seg_mgr->get_instance_name(int_object)))
return false;
//Array construction
if (seg_mgr->template find<IntLike>(object2_name).first)
return false;
IntLike* int_array = 0;
switch (i) {
case 0:
int_array = seg_mgr->template construct_it<IntLike>(object2_name)[10](&int_array_values[0]);
break;
case 1:
int_array = seg_mgr->template construct_it<IntLike>(object2_name, std::nothrow)[10](&int_array_values[0]);
break;
case 2:
int_array = seg_mgr->template find_or_construct_it<IntLike>(object2_name)[10](&int_array_values[0]);
break;
case 3:
int_array = seg_mgr->template find_or_construct_it<IntLike>(object2_name, std::nothrow)[10](&int_array_values[0]);
break;
}
BOOST_ASSERT(is_ptr_aligned(int_array, boost::move_detail::alignment_of<IntLike>::value));
if (!is_ptr_aligned(int_array, boost::move_detail::alignment_of<IntLike>::value))
return false;
std::pair<IntLike*, std::size_t> find_ret2 = seg_mgr->template find<IntLike>(object2_name);
if (int_array != find_ret2.first)
return false;
if (10 != find_ret2.second)
return false;
if (10 != seg_mgr->get_instance_length(int_array))
return false;
if (named_type != seg_mgr->get_instance_type(int_array))
return false;
if (std::strcmp(object2_name, seg_mgr->get_instance_name(int_array)))
return false;
if (seg_mgr->get_num_named_objects() != 2)
return false;
typename SegmentManager::const_named_iterator nb(seg_mgr->named_begin());
typename SegmentManager::const_named_iterator ne(seg_mgr->named_end());
for (std::size_t j = 0, imax = seg_mgr->get_num_named_objects(); j != imax; ++j) { ++nb; }
if (nb != ne)
return false;
seg_mgr->destroy_ptr(int_object);
seg_mgr->template destroy<IntLike>(object2_name);
}
//Try an imposible size to test error is signalled
{
bool operation_throws = false;
BOOST_INTERPROCESS_TRY{ seg_mgr->template construct<IntLike>(object1_name)[MappedRegionSize](); }
BOOST_INTERPROCESS_CATCH(interprocess_exception&) { operation_throws = true;}
BOOST_INTERPROCESS_CATCH_END
if (!operation_throws)
return false;
if (seg_mgr->template construct<IntLike>(object2_name, std::nothrow)[MappedRegionSize]())
return false;
}
{
bool operation_throws = false;
BOOST_INTERPROCESS_TRY{ seg_mgr->template construct_it<IntLike>(object1_name)[MappedRegionSize](&int_array_values[0]); }
BOOST_INTERPROCESS_CATCH(interprocess_exception&) { operation_throws = true; }
BOOST_INTERPROCESS_CATCH_END
if (!operation_throws)
return false;
if (seg_mgr->template construct_it<IntLike>(object2_name, std::nothrow)[MappedRegionSize](&int_array_values[0]))
return false;
}
seg_mgr->shrink_to_fit_indexes();
if (seg_mgr->get_free_memory() != free_mem_before)
return false;
if (!seg_mgr->all_memory_deallocated())
return false;
seg_mgr->reserve_named_objects(1);
//In indexes with no capacity() memory won't be allocated so don't check anything was allocated.
//if(seg_mgr->all_memory_deallocated()) return false;
seg_mgr->shrink_to_fit_indexes();
if (!seg_mgr->all_memory_deallocated())
return false;
return true;
}
template <class SegmentManager>
bool test_named_object(SegmentManager* seg_mgr, mapped_region& mapping)
{
if (!test_named_object_type<signed char>(seg_mgr, mapping))
return false;
if (!test_named_object_type<short int>(seg_mgr, mapping))
return false;
if (!test_named_object_type<int>(seg_mgr, mapping))
return false;
if (!test_named_object_type<long int>(seg_mgr, mapping))
return false;
#if (BOOST_INTERPROCESS_SEGMENT_MANAGER_ABI >= 2)
if (!test_named_object_type<long long int>(seg_mgr, mapping))
return false;
if (!test_named_object_type<IntLike<16> >(seg_mgr, mapping))
return false;
if (!test_named_object_type<IntLike<32> >(seg_mgr, mapping))
return false;
if (!test_named_object_type<IntLike<64> >(seg_mgr, mapping))
return false;
if (!test_named_object_type<IntLike<128> >(seg_mgr, mapping))
return false;
#endif //#if (BOOST_INTERPROCESS_SEGMENT_MANAGER_ABI >= 2)
return true;
}
template <class IntLike, class SegmentManager>
bool test_unique_object_type(SegmentManager* seg_mgr, mapped_region& mapping)
{
const std::size_t MappedRegionSize = mapping.get_size();
const std::size_t free_mem_before = seg_mgr->get_free_memory();
const signed char int_array_values[10] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };
for (std::size_t i = 0; i != 4; ++i) {
if (seg_mgr->template find<IntLike>(unique_instance).first)
return false;
//Single element construction
IntLike* int_object = 0;
switch (i) {
case 0:
int_object = seg_mgr->template construct<IntLike>(unique_instance)();
break;
case 1:
int_object = seg_mgr->template construct<IntLike>(unique_instance, std::nothrow)();
break;
case 2:
int_object = seg_mgr->template find_or_construct<IntLike>(unique_instance)();
break;
case 3:
int_object = seg_mgr->template find_or_construct<IntLike>(unique_instance, std::nothrow)();
break;
}
BOOST_ASSERT(is_ptr_aligned(int_object, boost::move_detail::alignment_of<IntLike>::value));
if (!is_ptr_aligned(int_object, boost::move_detail::alignment_of<IntLike>::value))
return false;
std::pair<IntLike*, std::size_t> find_ret = seg_mgr->template find<IntLike>(unique_instance);
if (int_object != find_ret.first)
return false;
if (1 != find_ret.second)
return false;
if (1 != seg_mgr->get_instance_length(int_object))
return false;
if (unique_type != seg_mgr->get_instance_type(int_object))
return false;
if (std::strcmp(typeid(IntLike).name(), seg_mgr->get_instance_name(int_object)))
return false;
//Array construction
if (!seg_mgr->template find<IntLike>(unique_instance).first)
return false;
seg_mgr->destroy_ptr(int_object);
IntLike* int_array = 0;
switch (i) {
case 0:
int_array = seg_mgr->template construct_it<IntLike>(unique_instance)[10](&int_array_values[0]);
break;
case 1:
int_array = seg_mgr->template construct_it<IntLike>(unique_instance, std::nothrow)[10](&int_array_values[0]);
break;
case 2:
int_array = seg_mgr->template find_or_construct_it<IntLike>(unique_instance)[10](&int_array_values[0]);
break;
case 3:
int_array = seg_mgr->template find_or_construct_it<IntLike>(unique_instance, std::nothrow)[10](&int_array_values[0]);
break;
}
BOOST_ASSERT(is_ptr_aligned(int_array, boost::move_detail::alignment_of<IntLike>::value));
if (!is_ptr_aligned(int_array, boost::move_detail::alignment_of<IntLike>::value))
return false;
std::pair<IntLike*, std::size_t> find_ret2 = seg_mgr->template find<IntLike>(unique_instance);
if (int_array != find_ret2.first)
return false;
if (10 != find_ret2.second)
return false;
if (10 != seg_mgr->get_instance_length(int_array))
return false;
if (unique_type != seg_mgr->get_instance_type(int_array))
return false;
if (std::strcmp(typeid(IntLike).name(), seg_mgr->get_instance_name(int_array)))
return false;
if (seg_mgr->get_num_unique_objects() != 1)
return false;
typename SegmentManager::const_unique_iterator nb(seg_mgr->unique_begin());
typename SegmentManager::const_unique_iterator ne(seg_mgr->unique_end());
for (std::size_t j = 0, imax = seg_mgr->get_num_unique_objects(); j != imax; ++j) { ++nb; }
if (nb != ne)
return false;
seg_mgr->template destroy<IntLike>(unique_instance);
}
//Try an imposible size to test error is signalled
{
bool operation_throws = false;
BOOST_INTERPROCESS_TRY{ seg_mgr->template construct<IntLike>(unique_instance)[MappedRegionSize](); }
BOOST_INTERPROCESS_CATCH(interprocess_exception&) { operation_throws = true; }
BOOST_INTERPROCESS_CATCH_END
if (!operation_throws)
return false;
if (seg_mgr->template construct<IntLike>(unique_instance, std::nothrow)[MappedRegionSize]())
return false;
}
{
bool operation_throws = false;
BOOST_INTERPROCESS_TRY{ seg_mgr->template construct_it<IntLike>(unique_instance)[MappedRegionSize](&int_array_values[0]); }
BOOST_INTERPROCESS_CATCH(interprocess_exception&) { operation_throws = true; }
BOOST_INTERPROCESS_CATCH_END
if (!operation_throws)
return false;
if (seg_mgr->template construct_it<IntLike>(unique_instance, std::nothrow)[MappedRegionSize](&int_array_values[0]))
return false;
}
seg_mgr->shrink_to_fit_indexes();
if (seg_mgr->get_free_memory() != free_mem_before)
return false;
if (!seg_mgr->all_memory_deallocated())
return false;
seg_mgr->reserve_unique_objects(1);
//In indexes with no capacity() memory won't be allocated so don't check anything was allocated.
//if(seg_mgr->all_memory_deallocated()) return false;
seg_mgr->shrink_to_fit_indexes();
if (!seg_mgr->all_memory_deallocated())
return false;
return true;
}
template <class SegmentManager>
bool test_unique_object(SegmentManager* seg_mgr, mapped_region& mapping)
{
if (!test_unique_object_type<signed char>(seg_mgr, mapping))
return false;
if (!test_unique_object_type<short int>(seg_mgr, mapping))
return false;
if (!test_unique_object_type<int>(seg_mgr, mapping))
return false;
if (!test_unique_object_type<long int>(seg_mgr, mapping))
return false;
#if (BOOST_INTERPROCESS_SEGMENT_MANAGER_ABI >= 2)
if (!test_unique_object_type<long long int>(seg_mgr, mapping))
return false;
if (!test_unique_object_type<IntLike<16> >(seg_mgr, mapping))
return false;
if (!test_unique_object_type<IntLike<32> >(seg_mgr, mapping))
return false;
if (!test_unique_object_type<IntLike<64> >(seg_mgr, mapping))
return false;
if (!test_unique_object_type<IntLike<128> >(seg_mgr, mapping))
return false;
#endif //#if (BOOST_INTERPROCESS_SEGMENT_MANAGER_ABI >= 2)
return true;
}
template <class SegmentManager>
bool test_atomic_func(SegmentManager* seg_mgr, mapped_region& )
{
if (!seg_mgr->all_memory_deallocated())
return false;
int* int_object = seg_mgr->template construct<int>("atomic_func_find_object")();
atomic_func_test<SegmentManager> func(*seg_mgr);
seg_mgr->atomic_func(func);
if (int_object != func.object)
return 1;
seg_mgr->destroy_ptr(int_object);
seg_mgr->shrink_to_fit_indexes();
if (!seg_mgr->all_memory_deallocated())
return false;
return true;
}
template <class SegmentManager>
bool test_allocator_deleter(SegmentManager* seg_mgr, mapped_region&)
{//test allocator/deleter
if (!seg_mgr->all_memory_deallocated())
return false;
typedef typename SegmentManager::template allocator<float>::type allocator_t;
allocator_t alloc(seg_mgr->template get_allocator<float>());
if (!seg_mgr->all_memory_deallocated())
return false;
offset_ptr<float> f = alloc.allocate(50);
if (seg_mgr->all_memory_deallocated())
return false;
alloc.deallocate(f, 50);
if (!seg_mgr->all_memory_deallocated())
return false;
typedef typename SegmentManager::template deleter<float>::type deleter_t;
deleter_t delet(seg_mgr->template get_deleter<float>());
delet(seg_mgr->template construct<float>(anonymous_instance)());
if (!seg_mgr->all_memory_deallocated())
return false;
return true;
}
template <class SegmentManager>
bool test_get_memory_algorithm(SegmentManager* seg_mgr, mapped_region&)
{
{
typename SegmentManager::memory_algorithm& mem_algo =
seg_mgr->get_memory_algorithm();
const typename SegmentManager::memory_algorithm& const_mem_algo =
const_cast<const SegmentManager*>(seg_mgr)->get_memory_algorithm();
if (&mem_algo != &const_mem_algo)
return false;
}
return true;
}
template <class SegmentManager>
bool test_segment_manager()
{
const unsigned int MappedRegionSize = 1024*64u;
std::string shmname(test::get_process_id_name());
shared_memory_object::remove(shmname.c_str());
shared_memory_object sh_mem( create_only, shmname.c_str(), read_write );
sh_mem.truncate( MappedRegionSize );
mapped_region mapping( sh_mem, read_write );
//Remove shared memory to minimize risk of garbage on crash
shared_memory_object::remove(shmname.c_str());
SegmentManager* seg_mgr = new( mapping.get_address() ) SegmentManager( MappedRegionSize );
std::size_t size_before = seg_mgr->get_size();
if(size_before != MappedRegionSize)
return false;
if(!seg_mgr->all_memory_deallocated())
return false;
if(seg_mgr->get_min_size() >= MappedRegionSize)
return false;
if (!test_allocate_deallocate(seg_mgr, mapping))
return false;
if (!test_allocate_aligned(seg_mgr, mapping))
return false;
if (!test_shrink_to_fit(seg_mgr, mapping))
return false;
if (!test_zero_free_memory(seg_mgr, mapping))
return false;
if (!test_anonymous_object(seg_mgr, mapping))
return false;
if (!test_named_object(seg_mgr, mapping))
return false;
if (!test_unique_object(seg_mgr, mapping))
return false;
if (!test_allocator_deleter(seg_mgr, mapping))
return false;
if (!test_atomic_func(seg_mgr, mapping))
return false;
if (!test_allocator_deleter(seg_mgr, mapping))
return false;
if (!test_get_memory_algorithm(seg_mgr, mapping))
return false;
return true;
}
template<class MemoryAlgorithm>
bool test_each_algo()
{
{
typedef segment_manager< char, MemoryAlgorithm, flat_map_index > segment_manager_t;
if(!test_segment_manager<segment_manager_t>())
return false;
}
{
typedef segment_manager< char, MemoryAlgorithm, map_index > segment_manager_t;
if(!test_segment_manager<segment_manager_t>())
return false;
}
{
typedef segment_manager< char, MemoryAlgorithm, iset_index > segment_manager_t;
if(!test_segment_manager<segment_manager_t>())
return false;
}
{
typedef segment_manager< char, MemoryAlgorithm, iunordered_set_index > segment_manager_t;
if(!test_segment_manager<segment_manager_t>())
return false;
}
return true;
}
int main()
{
if(!test_each_algo< simple_seq_fit< null_mutex_family > >())
return 1;
if(!test_each_algo< rbtree_best_fit< null_mutex_family > >())
return 1;
return 0;
}

View File

@@ -0,0 +1,12 @@
//////////////////////////////////////////////////////////////////////////////
//
// (C) Copyright Ion Gaztanaga 2004-2019. Distributed under the Boost
// Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
// See http://www.boost.org/libs/interprocess for documentation.
//
//////////////////////////////////////////////////////////////////////////////
#define BOOST_INTERPROCESS_SEGMENT_MANAGER_ABI 1
#include "segment_manager_test.hpp"