2
0
mirror of https://github.com/boostorg/hof.git synced 2026-01-31 20:22:11 +00:00
Files
hof/fit/pack.h

307 lines
7.6 KiB
C++

/*=============================================================================
Copyright (c) 2014 Paul Fultz II
pack.h
Distributed under the Boost Software License, Version 1.0. (See accompanying
file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
==============================================================================*/
#ifndef FIT_GUARD_FUNCTION_PACK_H
#define FIT_GUARD_FUNCTION_PACK_H
/// pack
/// ====
///
/// Description
/// -----------
///
/// The `pack` function returns a higher order function object that takes a
/// function that will be passed the initial elements. The function object is
/// a sequence that can be unpacked with `unpack_adaptor` as well. Also,
/// `pack_join` can be used to join multiple packes together.
///
/// Synopsis
/// --------
///
/// // Capture lvalues by reference and rvalues by value.
/// template<class... Ts>
/// constexpr auto pack(Ts&&... xs);
///
/// // Capture lvalues by reference and rvalue reference by reference
/// template<class... Ts>
/// constexpr auto pack_perfect(Ts&&... xs);
///
/// // Decay everything before capturing
/// template<class... Ts>
/// constexpr auto pack_decay(Ts&&... xs);
///
/// // Join multiple packs together
/// template<class... Ts>
/// constexpr auto pack_join(Ts&&... xs);
///
///
/// Example
/// -------
///
/// struct sum
/// {
/// template<class T, class U>
/// T operator()(T x, U y) const
/// {
/// return x+y;
/// }
/// };
///
/// int r = pack(3, 2)(sum());
/// assert(r == 5);
///
#include <fit/detail/seq.h>
#include <fit/detail/delegate.h>
#include <fit/detail/remove_rvalue_reference.h>
#include <fit/detail/unwrap.h>
#include <fit/detail/static_const_var.h>
#include <fit/returns.h>
#ifndef FIT_HAS_RVALUE_THIS
#define FIT_HAS_RVALUE_THIS 1
#endif
#ifndef FIT_PACK_HAS_EBO
#ifdef __clang__
#define FIT_PACK_HAS_EBO 1
#else
#define FIT_PACK_HAS_EBO 0
#endif
#endif
namespace fit { namespace detail {
struct decay_elem_f
{
template<class T>
constexpr typename unwrap_reference<typename std::decay<T>::type>::type
operator()(T&& x) const
{
return fit::forward<T>(x);
}
};
static decay_elem_f decay_elem = {};
template<class...>
struct pack_tag
{};
template<int, class T, class, class=void>
struct pack_holder
{
T value;
constexpr const T& get_value() const
{
return this->value;
}
FIT_DELGATE_CONSTRUCTOR(pack_holder, T, value)
};
#if FIT_PACK_HAS_EBO
template<int N, class T, class Tag>
struct pack_holder<N, T, Tag, typename std::enable_if<(std::is_empty<T>::value)>::type>
: private T
{
constexpr const T& get_value() const
{
return *this;
}
FIT_INHERIT_CONSTRUCTOR(pack_holder, T)
};
#endif
template<class Seq, class... Ts>
struct pack_base;
template<int N, class T, class Tag, class... Ts>
constexpr T&& pack_get(const pack_holder<N, T, Tag>& p, Ts&&...)
{
// C style cast(rather than static_cast) is needed for gcc
return (T&&)(p.get_value());
}
#if defined(__GNUC__) && !defined (__clang__) && __GNUC__ == 4 && __GNUC_MINOR__ < 7
template<class Seq, class... Ts>
struct pack_holder_base;
template<int... Ns, class... Ts>
struct pack_holder_base<seq<Ns...>, Ts...>
: pack_holder<Ns, Ts, pack_tag<Ts...>>...
{
template<class... Xs>
constexpr pack_holder_base(Xs&&... xs) : pack_holder<Ns, Ts, pack_tag<Ts...>>(fit::forward<Xs>(xs))...
{}
};
template<int... Ns, class... Ts>
struct pack_base<seq<Ns...>, Ts...>
: pack_holder_base<seq<Ns...>, Ts...>
{
typedef pack_holder_base<seq<Ns...>, Ts...> base;
template<class X1, class X2, class... Xs>
constexpr pack_base(X1&& x1, X2&& x2, Xs&&... xs)
: base(fit::forward<X1>(x1), fit::forward<X2>(x2), fit::forward<Xs>(xs)...)
{}
template<class X1, typename std::enable_if<(!std::is_convertible<X1, pack_base>::value), int>::type = 0>
constexpr pack_base(X1&& x1)
: base(fit::forward<X1>(x1))
{}
constexpr pack_base()
{}
FIT_RETURNS_CLASS(pack_base);
template<class F>
constexpr auto operator()(F&& f) const FIT_RETURNS
(
f(pack_get<Ns, Ts, pack_tag<Ts...>>(*FIT_CONST_THIS, f)...)
);
};
#else
template<int... Ns, class... Ts>
struct pack_base<seq<Ns...>, Ts...>
: pack_holder<Ns, Ts, pack_tag<Ts...>>...
{
template<class... Xs, FIT_ENABLE_IF_CONVERTIBLE_UNPACK(Xs&&, pack_holder<Ns, Ts, pack_tag<Ts...>>)>
constexpr pack_base(Xs&&... xs) : pack_holder<Ns, Ts, pack_tag<Ts...>>(fit::forward<Xs>(xs))...
{}
template<class F>
constexpr auto operator()(F&& f) const FIT_RETURNS
(
f(pack_get<Ns, Ts, pack_tag<Ts...>>(*this, f)...)
);
};
#endif
template<>
struct pack_base<seq<> >
{
template<class F>
constexpr auto operator()(F&& f) const FIT_RETURNS
(f());
};
template<class P1, class P2>
struct pack_join_base;
template<int... Ns1, class... Ts1, int... Ns2, class... Ts2>
struct pack_join_base<pack_base<seq<Ns1...>, Ts1...>, pack_base<seq<Ns2...>, Ts2...>>
{
static constexpr long total_size = sizeof...(Ts1) + sizeof...(Ts2);
typedef pack_base<typename detail::gens<total_size>::type, Ts1..., Ts2...> result_type;
template<class P1, class P2>
static constexpr result_type call(P1&& p1, P2&& p2)
{
// TODO: static_assert that the pack is an rvalue if its only moveable
return result_type(
pack_get<Ns1, Ts1>(fit::forward<P1>(p1))...,
pack_get<Ns2, Ts2>(fit::forward<P2>(p2))...);
}
};
template<class P1, class P2>
struct pack_join_result
: pack_join_base<
typename std::remove_cv<typename std::remove_reference<P1>::type>::type,
typename std::remove_cv<typename std::remove_reference<P2>::type>::type
>
{};
struct pack_f
{
template<class... Ts>
constexpr auto operator()(Ts&&... xs) const FIT_RETURNS
(
pack_base<typename gens<sizeof...(Ts)>::type, typename remove_rvalue_reference<Ts>::type...>(fit::forward<Ts>(xs)...)
);
};
struct pack_forward_f
{
template<class... Ts>
constexpr auto operator()(Ts&&... xs) const FIT_RETURNS
(
pack_base<typename gens<sizeof...(Ts)>::type, Ts&&...>(fit::forward<Ts>(xs)...)
);
};
struct pack_decay_f
{
template<class... Ts>
constexpr auto operator()(Ts&&... xs) const FIT_RETURNS
(
pack_f()(decay_elem(fit::forward<Ts>(xs))...)
);
};
template<class P1, class P2>
constexpr typename pack_join_result<P1, P2>::result_type make_pack_join_dual(P1&& p1, P2&& p2)
{
return pack_join_result<P1, P2>::call(fit::forward<P1>(p1), fit::forward<P2>(p2));
}
// Manually compute join return type to make older gcc happy
template<class... Ts>
struct join_type;
template<class T>
struct join_type<T>
{
typedef T type;
};
template<class T, class... Ts>
struct join_type<T, Ts...>
{
typedef typename pack_join_result<T, typename join_type<Ts...>::type>::result_type type;
};
template<class P1>
constexpr P1 make_pack_join(P1&& p1)
{
return fit::forward<P1>(p1);
}
template<class P1, class... Ps>
constexpr typename join_type<P1, Ps...>::type make_pack_join(P1&& p1, Ps&&... ps)
{
return make_pack_join_dual(fit::forward<P1>(p1), make_pack_join(fit::forward<Ps>(ps)...));
}
struct pack_join_f
{
template<class... Ps>
constexpr auto operator()(Ps&&... ps) const FIT_RETURNS
(
make_pack_join(fit::forward<Ps>(ps)...)
);
};
}
FIT_DECLARE_STATIC_VAR(pack, detail::pack_f);
FIT_DECLARE_STATIC_VAR(pack_forward, detail::pack_forward_f);
FIT_DECLARE_STATIC_VAR(pack_decay, detail::pack_decay_f);
FIT_DECLARE_STATIC_VAR(pack_join, detail::pack_join_f);
}
#endif