2
0
mirror of https://github.com/boostorg/hof.git synced 2026-01-31 20:22:11 +00:00
Files
hof/include/fit/by.hpp
2016-02-13 18:54:19 -06:00

254 lines
6.6 KiB
C++

/*=============================================================================
Copyright (c) 2014 Paul Fultz II
by.h
Distributed under the Boost Software License, Version 1.0. (See accompanying
file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
==============================================================================*/
#ifndef FIT_GUARD_FUNCTION_ON_H
#define FIT_GUARD_FUNCTION_ON_H
/// by
/// ==
///
/// Description
/// -----------
///
/// The `by` function adaptor applies a projection onto the parameters of
/// another function. This is useful, for example, to define a function for
/// sorting such that the ordering is based off of the value of one of its
/// member fields.
///
/// Also, if just a projection is given, then the projection will be called
/// for each of its arguments.
///
/// Note: All projections are always evaluated in order from left-to-right.
///
/// Synopsis
/// --------
///
/// template<class Projection, class F>
/// constexpr by_adaptor<Projection, F> by(Projection p, F f);
///
/// template<class Projection>
/// constexpr by_adaptor<Projection> by(Projection p);
///
/// Semantics
/// ---------
///
/// assert(by(p, f)(xs...) == f(p(xs)...));
///
/// Requirements
/// ------------
///
/// Projection must be:
///
/// * [UnaryCallable](concepts.md#unarycallable)
/// * MoveConstructible
///
/// F must be:
///
/// * [Callable](concepts.md#callable)
/// * MoveConstructible
///
/// Example
/// -------
///
/// struct foo
/// {
/// foo(int x_) : x(x_)
/// {}
/// int x;
/// };
/// assert(fit::by(&foo::x, _ + _)(foo(1), foo(2)) == 3);
///
#include <utility>
#include <fit/always.hpp>
#include <fit/detail/callable_base.hpp>
#include <fit/detail/result_of.hpp>
#include <fit/detail/move.hpp>
#include <fit/detail/make.hpp>
#include <fit/detail/static_const_var.hpp>
#include <fit/apply_eval.hpp>
namespace fit {
namespace detail {
template<class T, class Projection>
struct project_eval
{
T&& x;
const Projection& p;
template<class X, class P>
constexpr project_eval(X&& xp, const P& pp) : x(FIT_FORWARD(X)(xp)), p(pp)
{}
constexpr auto operator()() const FIT_RETURNS
(p(FIT_FORWARD(T)(x)));
};
template<class T, class Projection>
constexpr project_eval<T, Projection> make_project_eval(T&& x, const Projection& p)
{
return project_eval<T, Projection>(FIT_FORWARD(T)(x), p);
}
template<class T, class Projection>
struct project_void_eval
{
T&& x;
const Projection& p;
template<class X, class P>
constexpr project_void_eval(X&& xp, const P& pp) : x(FIT_FORWARD(X)(xp)), p(pp)
{}
struct void_ {};
constexpr void_ operator()() const
{
return p(FIT_FORWARD(T)(x)), void_();
}
};
template<class T, class Projection>
constexpr project_void_eval<T, Projection> make_project_void_eval(T&& x, const Projection& p)
{
return project_void_eval<T, Projection>(FIT_FORWARD(T)(x), p);
}
template<class Projection, class F, class... Ts,
class R=decltype(
std::declval<const F&>()(std::declval<const Projection&>()(std::declval<Ts>())...)
)>
constexpr R by_eval(const Projection& p, const F& f, Ts&&... xs)
{
return apply_eval(f, make_project_eval(FIT_FORWARD(Ts)(xs), p)...);
}
#if FIT_NO_ORDERED_BRACE_INIT
#define FIT_BY_VOID_RETURN FIT_ALWAYS_VOID_RETURN
#else
#if FIT_NO_CONSTEXPR_VOID
#define FIT_BY_VOID_RETURN fit::detail::swallow
#else
#define FIT_BY_VOID_RETURN void
#endif
#endif
template<class Projection, class... Ts>
constexpr FIT_ALWAYS_VOID_RETURN by_void_eval(const Projection& p, Ts&&... xs)
{
return apply_eval(always(), make_project_void_eval(FIT_FORWARD(Ts)(xs), p)...);
}
struct swallow
{
template<class... Ts>
constexpr swallow(Ts&&...)
{}
};
}
template<class Projection, class F=void>
struct by_adaptor;
template<class Projection, class F>
struct by_adaptor : detail::callable_base<Projection>, detail::callable_base<F>
{
typedef by_adaptor fit_rewritable_tag;
template<class... Ts>
constexpr const detail::callable_base<F>& base_function(Ts&&... xs) const
{
return always_ref(*this)(xs...);
}
template<class... Ts>
constexpr const detail::callable_base<Projection>& base_projection(Ts&&... xs) const
{
return always_ref(*this)(xs...);
}
struct by_failure
{
template<class Failure>
struct apply
{
template<class... Ts>
struct of
: Failure::template of<decltype(std::declval<detail::callable_base<Projection>>()(std::declval<Ts>()))...>
{};
};
};
struct failure
: failure_map<by_failure, detail::callable_base<F>>
{};
FIT_INHERIT_DEFAULT(by_adaptor, detail::callable_base<Projection>, F)
template<class P, class G, FIT_ENABLE_IF_CONVERTIBLE(P, detail::callable_base<Projection>), FIT_ENABLE_IF_CONVERTIBLE(G, detail::callable_base<F>)>
constexpr by_adaptor(P&& p, G&& f)
: detail::callable_base<Projection>(FIT_FORWARD(P)(p)), detail::callable_base<F>(FIT_FORWARD(G)(f))
{}
FIT_RETURNS_CLASS(by_adaptor);
template<class... Ts>
constexpr FIT_SFINAE_RESULT(const detail::callable_base<F>&, result_of<const detail::callable_base<Projection>&, id_<Ts>>...)
operator()(Ts&&... xs) const FIT_SFINAE_RETURNS
(
detail::by_eval(
FIT_MANGLE_CAST(const detail::callable_base<Projection>&)(FIT_CONST_THIS->base_projection(xs...)),
FIT_MANGLE_CAST(const detail::callable_base<F>&)(FIT_CONST_THIS->base_function(xs...)),
FIT_FORWARD(Ts)(xs)...
)
);
};
template<class Projection>
struct by_adaptor<Projection, void> : detail::callable_base<Projection>
{
typedef by_adaptor fit_rewritable1_tag;
template<class... Ts>
constexpr const detail::callable_base<Projection>& base_projection(Ts&&... xs) const
{
return always_ref(*this)(xs...);
}
FIT_INHERIT_DEFAULT(by_adaptor, detail::callable_base<Projection>)
template<class P, FIT_ENABLE_IF_CONVERTIBLE(P, detail::callable_base<Projection>)>
constexpr by_adaptor(P&& p)
: detail::callable_base<Projection>(FIT_FORWARD(P)(p))
{}
FIT_RETURNS_CLASS(by_adaptor);
template<class... Ts>
constexpr FIT_BY_VOID_RETURN operator()(Ts&&... xs) const
{
#if FIT_NO_ORDERED_BRACE_INIT
return detail::by_void_eval(this->base_projection(xs...), FIT_FORWARD(Ts)(xs)...);
#else
#if FIT_NO_CONSTEXPR_VOID
return
#endif
detail::swallow{
(this->base_projection(xs...)(FIT_FORWARD(Ts)(xs)), 0)...
};
#endif
}
};
FIT_DECLARE_STATIC_VAR(by, detail::make<by_adaptor>);
} // namespace fit
#endif