2
0
mirror of https://github.com/boostorg/hof.git synced 2026-01-22 05:12:39 +00:00
Files
hof/include/fit/construct.hpp
2016-11-21 02:37:54 -06:00

303 lines
8.3 KiB
C++

/*=============================================================================
Copyright (c) 2015 Paul Fultz II
construct.h
Distributed under the Boost Software License, Version 1.0. (See accompanying
file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
==============================================================================*/
#ifndef FIT_GUARD_CONSTRUCT_H
#define FIT_GUARD_CONSTRUCT_H
/// construct
/// =========
///
/// Description
/// -----------
///
/// The `construct` function returns a function object that will construct the
/// object when the called. A template can also be given, which it will deduce
/// the parameters to the template. The `construct_meta` can be used to
/// construct the object from a metafunction.
///
/// Synopsis
/// --------
///
/// // Construct by decaying each value
/// template<class T>
/// constexpr auto construct();
///
/// template<template<class...> class Template>
/// constexpr auto construct();
///
/// // Construct by deducing lvalues by reference and rvalue reference by reference
/// template<class T>
/// constexpr auto construct_forward();
///
/// template<template<class...> class Template>
/// constexpr auto construct_forward();
///
/// // Construct by deducing lvalues by reference and rvalues by value.
/// template<class T>
/// constexpr auto construct_basic();
///
/// template<template<class...> class Template>
/// constexpr auto construct_basic();
///
/// // Construct by deducing the object from a metafunction
/// template<class MetafunctionClass>
/// constexpr auto construct_meta();
///
/// template<template<class...> class MetafunctionTemplate>
/// constexpr auto construct_meta();
///
/// Semantics
/// ---------
///
/// assert(construct<T>()(xs...) == T(xs...));
/// assert(construct<Template>()(xs...) == Template<decltype(xs)...>(xs...));
/// assert(construct_meta<MetafunctionClass>()(xs...) == MetafunctionClass::apply<decltype(xs)...>(xs...));
/// assert(construct_meta<MetafunctionTemplate>()(xs...) == MetafunctionTemplate<decltype(xs)...>::type(xs...));
///
/// Requirements
/// ------------
///
/// MetafunctionClass must be a:
///
/// * [MetafunctionClass](MetafunctionClass)
///
/// MetafunctionTemplate<Ts...> must be a:
///
/// * [Metafunction](Metafunction)
///
/// T, Template<Ts..>, MetafunctionClass::apply<Ts...>, and
/// MetafunctionTemplate<Ts...>::type must be:
///
/// * MoveConstructible
///
/// Example
/// -------
///
/// #include <fit.hpp>
/// #include <cassert>
/// #include <vector>
///
/// int main() {
/// auto v = fit::construct<std::vector<int>>()(5, 5);
/// assert(v.size() == 5);
/// }
///
#include <fit/detail/forward.hpp>
#include <fit/detail/move.hpp>
#include <fit/detail/delegate.hpp>
#include <fit/detail/join.hpp>
#include <fit/detail/remove_rvalue_reference.hpp>
#include <fit/decay.hpp>
#include <initializer_list>
namespace fit {
namespace detail {
template<class T, class=void>
struct construct_f
{
typedef typename std::aligned_storage<sizeof(T)>::type storage;
struct storage_holder
{
storage * s;
storage_holder(storage* x) noexcept : s(x)
{}
T& data() noexcept
{
return *reinterpret_cast<T*>(s);
}
~storage_holder() noexcept(noexcept(std::declval<T>().~T()))
{
this->data().~T();
}
};
constexpr construct_f() noexcept
{}
template<class... Ts, FIT_ENABLE_IF_CONSTRUCTIBLE(T, Ts...)>
T operator()(Ts&&... xs) const FIT_NOEXCEPT_CONSTRUCTIBLE(T, Ts&&...)
{
storage buffer{};
new(&buffer) T(FIT_FORWARD(Ts)(xs)...);
storage_holder h(&buffer);
return h.data();
}
template<class X, FIT_ENABLE_IF_CONSTRUCTIBLE(T, std::initializer_list<X>&&)>
T operator()(std::initializer_list<X>&& x) const FIT_NOEXCEPT_CONSTRUCTIBLE(T, std::initializer_list<X>&&)
{
storage buffer{};
new(&buffer) T(static_cast<std::initializer_list<X>&&>(x));
storage_holder h(&buffer);
return h.data();
}
template<class X, FIT_ENABLE_IF_CONSTRUCTIBLE(T, std::initializer_list<X>&)>
T operator()(std::initializer_list<X>& x) const FIT_NOEXCEPT_CONSTRUCTIBLE(T, std::initializer_list<X>&)
{
storage buffer{};
new(&buffer) T(x);
storage_holder h(&buffer);
return h.data();
}
template<class X, FIT_ENABLE_IF_CONSTRUCTIBLE(T, const std::initializer_list<X>&)>
T operator()(const std::initializer_list<X>& x) const FIT_NOEXCEPT_CONSTRUCTIBLE(T, const std::initializer_list<X>&)
{
storage buffer{};
new(&buffer) T(x);
storage_holder h(&buffer);
return h.data();
}
};
template<class T>
struct construct_f<T, typename std::enable_if<FIT_IS_LITERAL(T)>::type>
{
constexpr construct_f() noexcept
{}
template<class... Ts, FIT_ENABLE_IF_CONSTRUCTIBLE(T, Ts...)>
constexpr T operator()(Ts&&... xs) const noexcept
{
return T(FIT_FORWARD(Ts)(xs)...);
}
template<class X, FIT_ENABLE_IF_CONSTRUCTIBLE(T, std::initializer_list<X>&&)>
constexpr T operator()(std::initializer_list<X>&& x) const noexcept
{
return T(static_cast<std::initializer_list<X>&&>(x));
}
template<class X, FIT_ENABLE_IF_CONSTRUCTIBLE(T, std::initializer_list<X>&)>
constexpr T operator()(std::initializer_list<X>& x) const noexcept
{
return T(x);
}
template<class X, FIT_ENABLE_IF_CONSTRUCTIBLE(T, const std::initializer_list<X>&)>
constexpr T operator()(const std::initializer_list<X>& x) const noexcept
{
return T(x);
}
};
template<template<class...> class Template, template<class...> class D>
struct construct_template_f
{
constexpr construct_template_f() noexcept
{}
template<class... Ts, class Result=FIT_JOIN(Template, typename D<Ts>::type...),
FIT_ENABLE_IF_CONSTRUCTIBLE(Result, Ts...)>
constexpr Result operator()(Ts&&... xs) const FIT_NOEXCEPT_CONSTRUCTIBLE(Result, Ts&&...)
{
return construct_f<Result>()(FIT_FORWARD(Ts)(xs)...);
}
};
template<class MetafunctionClass>
struct construct_meta_f
{
constexpr construct_meta_f() noexcept
{}
template<class... Ts>
struct apply
: MetafunctionClass::template apply<Ts...>
{};
template<class... Ts,
class Metafunction=FIT_JOIN(apply, Ts...),
class Result=typename Metafunction::type,
FIT_ENABLE_IF_CONSTRUCTIBLE(Result, Ts...)>
constexpr Result operator()(Ts&&... xs) const FIT_NOEXCEPT_CONSTRUCTIBLE(Result, Ts&&...)
{
return construct_f<Result>()(FIT_FORWARD(Ts)(xs)...);
}
};
template<template<class...> class MetafunctionTemplate>
struct construct_meta_template_f
{
constexpr construct_meta_template_f() noexcept
{}
template<class... Ts,
class Metafunction=FIT_JOIN(MetafunctionTemplate, Ts...),
class Result=typename Metafunction::type,
FIT_ENABLE_IF_CONSTRUCTIBLE(Result, Ts...)>
constexpr Result operator()(Ts&&... xs) const FIT_NOEXCEPT_CONSTRUCTIBLE(Result, Ts&&...)
{
return construct_f<Result>()(FIT_FORWARD(Ts)(xs)...);
}
};
template<class T>
struct construct_id
{
typedef T type;
};
}
template<class T>
constexpr detail::construct_f<T> construct() noexcept
{
return {};
}
// These overloads are provide for consistency
template<class T>
constexpr detail::construct_f<T> construct_forward() noexcept
{
return {};
}
template<class T>
constexpr detail::construct_f<T> construct_basic() noexcept
{
return {};
}
template<template<class...> class Template>
constexpr detail::construct_template_f<Template, detail::decay_mf> construct() noexcept
{
return {};
}
template<template<class...> class Template>
constexpr detail::construct_template_f<Template, detail::construct_id> construct_forward() noexcept
{
return {};
}
template<template<class...> class Template>
constexpr detail::construct_template_f<Template, detail::remove_rvalue_reference> construct_basic() noexcept
{
return {};
}
template<class T>
constexpr detail::construct_meta_f<T> construct_meta() noexcept
{
return {};
}
template<template<class...> class Template>
constexpr detail::construct_meta_template_f<Template> construct_meta() noexcept
{
return {};
}
} // namespace fit
#endif