mirror of
https://github.com/boostorg/histogram.git
synced 2026-01-30 07:52:11 +00:00
434 lines
14 KiB
C++
434 lines
14 KiB
C++
// Copyright 2015-2016 Hans Dembinski
|
|
//
|
|
// Distributed under the Boost Software License, Version 1.0.
|
|
// (See accompanying file LICENSE_1_0.txt
|
|
// or copy at http://www.boost.org/LICENSE_1_0.txt)
|
|
|
|
#include "serialization_suite.hpp"
|
|
#include <boost/histogram/axis.hpp>
|
|
#include <boost/histogram/dynamic_histogram.hpp>
|
|
#include <boost/histogram/histogram_ostream_operators.hpp>
|
|
#include <boost/histogram/serialization.hpp>
|
|
#include <boost/histogram/utility.hpp>
|
|
#include <boost/python.hpp>
|
|
#include <boost/python/raw_function.hpp>
|
|
#include <boost/shared_ptr.hpp>
|
|
#include <boost/variant/apply_visitor.hpp>
|
|
#include <boost/variant/static_visitor.hpp>
|
|
#ifdef HAVE_NUMPY
|
|
#define NO_IMPORT_ARRAY
|
|
#define PY_ARRAY_UNIQUE_SYMBOL boost_histogram_ARRAY_API
|
|
#define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION
|
|
#include <numpy/arrayobject.h>
|
|
#endif
|
|
|
|
#ifndef BOOST_HISTOGRAM_AXIS_LIMIT
|
|
#define BOOST_HISTOGRAM_AXIS_LIMIT 32
|
|
#endif
|
|
|
|
namespace boost {
|
|
namespace histogram {
|
|
|
|
struct axis_visitor : public static_visitor<python::object> {
|
|
template <typename T> python::object operator()(const T &t) const {
|
|
return python::object(t);
|
|
}
|
|
};
|
|
|
|
python::object histogram_axis(const dynamic_histogram<> &self, int i) {
|
|
if (i < 0)
|
|
i += self.dim();
|
|
if (i < 0 || i >= int(self.dim())) {
|
|
PyErr_SetString(PyExc_IndexError, "axis index out of range");
|
|
python::throw_error_already_set();
|
|
}
|
|
return apply_visitor(axis_visitor(), self.axis(i));
|
|
}
|
|
|
|
python::object histogram_init(python::tuple args, python::dict kwargs) {
|
|
using namespace python;
|
|
using python::tuple;
|
|
|
|
object self = args[0];
|
|
object pyinit = self.attr("__init__");
|
|
|
|
if (kwargs) {
|
|
PyErr_SetString(PyExc_RuntimeError, "no keyword arguments allowed");
|
|
throw_error_already_set();
|
|
}
|
|
|
|
const unsigned dim = len(args) - 1;
|
|
|
|
// normal constructor
|
|
std::vector<dynamic_histogram<>::axis_type> axes;
|
|
for (unsigned i = 0; i < dim; ++i) {
|
|
object pa = args[i + 1];
|
|
extract<regular_axis<>> er(pa);
|
|
if (er.check()) {
|
|
axes.push_back(er());
|
|
continue;
|
|
}
|
|
extract<circular_axis<>> ep(pa);
|
|
if (ep.check()) {
|
|
axes.push_back(ep());
|
|
continue;
|
|
}
|
|
extract<variable_axis<>> ev(pa);
|
|
if (ev.check()) {
|
|
axes.push_back(ev());
|
|
continue;
|
|
}
|
|
extract<integer_axis> ei(pa);
|
|
if (ei.check()) {
|
|
axes.push_back(ei());
|
|
continue;
|
|
}
|
|
extract<category_axis> ec(pa);
|
|
if (ec.check()) {
|
|
axes.push_back(ec());
|
|
continue;
|
|
}
|
|
std::string msg = "require an axis object, got ";
|
|
msg += extract<std::string>(pa.attr("__class__").attr("__name__"))();
|
|
PyErr_SetString(PyExc_TypeError, msg.c_str());
|
|
throw_error_already_set();
|
|
}
|
|
dynamic_histogram<> h(axes.begin(), axes.end());
|
|
return pyinit(h);
|
|
}
|
|
|
|
python::object histogram_fill(python::tuple args, python::dict kwargs) {
|
|
using namespace python;
|
|
|
|
const unsigned nargs = len(args);
|
|
dynamic_histogram<> &self = extract<dynamic_histogram<> &>(args[0]);
|
|
|
|
object ow;
|
|
if (kwargs) {
|
|
if (len(kwargs) > 1 || !kwargs.has_key("w")) {
|
|
PyErr_SetString(PyExc_RuntimeError, "only keyword w allowed");
|
|
throw_error_already_set();
|
|
}
|
|
ow = kwargs.get("w");
|
|
}
|
|
|
|
#ifdef HAVE_NUMPY
|
|
if (nargs == 2) {
|
|
object o = args[1];
|
|
if (PySequence_Check(o.ptr())) {
|
|
PyArrayObject *a = reinterpret_cast<PyArrayObject *>(
|
|
PyArray_FROM_OTF(o.ptr(), NPY_DOUBLE, NPY_ARRAY_IN_ARRAY));
|
|
if (!a) {
|
|
PyErr_SetString(PyExc_ValueError,
|
|
"could not convert sequence into array");
|
|
throw_error_already_set();
|
|
}
|
|
|
|
npy_intp *dims = PyArray_DIMS(a);
|
|
switch (PyArray_NDIM(a)) {
|
|
case 1:
|
|
if (self.dim() > 1) {
|
|
PyErr_SetString(PyExc_ValueError, "array has to be two-dimensional");
|
|
throw_error_already_set();
|
|
}
|
|
break;
|
|
case 2:
|
|
if (self.dim() != dims[1]) {
|
|
PyErr_SetString(PyExc_ValueError,
|
|
"size of second dimension does not match");
|
|
throw_error_already_set();
|
|
}
|
|
break;
|
|
default:
|
|
PyErr_SetString(PyExc_ValueError, "array has wrong dimension");
|
|
throw_error_already_set();
|
|
}
|
|
|
|
if (!ow.is_none()) {
|
|
if (PySequence_Check(ow.ptr())) {
|
|
PyArrayObject *aw = reinterpret_cast<PyArrayObject *>(
|
|
PyArray_FROM_OTF(ow.ptr(), NPY_DOUBLE, NPY_ARRAY_IN_ARRAY));
|
|
if (!aw) {
|
|
PyErr_SetString(PyExc_ValueError,
|
|
"could not convert sequence into array");
|
|
throw_error_already_set();
|
|
}
|
|
|
|
if (PyArray_NDIM(aw) != 1) {
|
|
PyErr_SetString(PyExc_ValueError,
|
|
"array has to be one-dimensional");
|
|
throw_error_already_set();
|
|
}
|
|
|
|
if (PyArray_DIMS(aw)[0] != dims[0]) {
|
|
PyErr_SetString(PyExc_ValueError, "sizes do not match");
|
|
throw_error_already_set();
|
|
}
|
|
|
|
for (unsigned i = 0; i < dims[0]; ++i) {
|
|
double *v = reinterpret_cast<double *>(PyArray_GETPTR1(a, i));
|
|
double *w = reinterpret_cast<double *>(PyArray_GETPTR1(aw, i));
|
|
self.wfill(*w, v, v + self.dim());
|
|
}
|
|
|
|
Py_DECREF(aw);
|
|
} else {
|
|
PyErr_SetString(PyExc_ValueError, "w is not a sequence");
|
|
throw_error_already_set();
|
|
}
|
|
} else {
|
|
for (unsigned i = 0; i < dims[0]; ++i) {
|
|
double *v = reinterpret_cast<double *>(PyArray_GETPTR1(a, i));
|
|
self.fill(v, v + self.dim());
|
|
}
|
|
}
|
|
|
|
Py_DECREF(a);
|
|
return object();
|
|
}
|
|
}
|
|
#endif
|
|
|
|
const unsigned dim = nargs - 1;
|
|
if (dim != self.dim()) {
|
|
PyErr_SetString(PyExc_RuntimeError, "wrong number of arguments");
|
|
throw_error_already_set();
|
|
}
|
|
|
|
if (dim > BOOST_HISTOGRAM_AXIS_LIMIT) {
|
|
std::ostringstream os;
|
|
os << "too many axes, maximum is " << BOOST_HISTOGRAM_AXIS_LIMIT;
|
|
PyErr_SetString(PyExc_RuntimeError, os.str().c_str());
|
|
throw_error_already_set();
|
|
}
|
|
|
|
double v[BOOST_HISTOGRAM_AXIS_LIMIT];
|
|
for (unsigned i = 0; i < dim; ++i)
|
|
v[i] = extract<double>(args[1 + i]);
|
|
|
|
if (ow.is_none()) {
|
|
self.fill(v, v + self.dim());
|
|
} else {
|
|
const double w = extract<double>(ow);
|
|
self.wfill(w, v, v + self.dim());
|
|
}
|
|
|
|
return object();
|
|
}
|
|
|
|
python::object histogram_value(python::tuple args, python::dict kwargs) {
|
|
using namespace python;
|
|
const dynamic_histogram<> &self =
|
|
extract<const dynamic_histogram<> &>(args[0]);
|
|
|
|
const unsigned dim = len(args) - 1;
|
|
if (self.dim() != dim) {
|
|
PyErr_SetString(PyExc_RuntimeError, "wrong number of arguments");
|
|
throw_error_already_set();
|
|
}
|
|
|
|
if (dim > BOOST_HISTOGRAM_AXIS_LIMIT) {
|
|
std::ostringstream os;
|
|
os << "too many axes, maximum is " << BOOST_HISTOGRAM_AXIS_LIMIT;
|
|
PyErr_SetString(PyExc_RuntimeError, os.str().c_str());
|
|
throw_error_already_set();
|
|
}
|
|
|
|
if (kwargs) {
|
|
PyErr_SetString(PyExc_RuntimeError, "no keyword arguments allowed");
|
|
throw_error_already_set();
|
|
}
|
|
|
|
int idx[BOOST_HISTOGRAM_AXIS_LIMIT];
|
|
for (unsigned i = 0; i < self.dim(); ++i)
|
|
idx[i] = extract<int>(args[1 + i]);
|
|
|
|
return object(self.value(idx + 0, idx + self.dim()));
|
|
}
|
|
|
|
python::object histogram_variance(python::tuple args, python::dict kwargs) {
|
|
using namespace python;
|
|
const dynamic_histogram<> &self =
|
|
extract<const dynamic_histogram<> &>(args[0]);
|
|
|
|
const unsigned dim = len(args) - 1;
|
|
if (self.dim() != dim) {
|
|
PyErr_SetString(PyExc_RuntimeError, "wrong number of arguments");
|
|
throw_error_already_set();
|
|
}
|
|
|
|
if (dim > BOOST_HISTOGRAM_AXIS_LIMIT) {
|
|
std::ostringstream os;
|
|
os << "too many axes, maximum is " << BOOST_HISTOGRAM_AXIS_LIMIT;
|
|
PyErr_SetString(PyExc_RuntimeError, os.str().c_str());
|
|
throw_error_already_set();
|
|
}
|
|
|
|
if (kwargs) {
|
|
PyErr_SetString(PyExc_RuntimeError, "no keyword arguments allowed");
|
|
throw_error_already_set();
|
|
}
|
|
|
|
int idx[BOOST_HISTOGRAM_AXIS_LIMIT];
|
|
for (unsigned i = 0; i < self.dim(); ++i)
|
|
idx[i] = extract<int>(args[1 + i]);
|
|
|
|
return object(self.variance(idx + 0, idx + self.dim()));
|
|
}
|
|
|
|
std::string histogram_repr(const dynamic_histogram<> &h) {
|
|
std::ostringstream os;
|
|
os << h;
|
|
return os.str();
|
|
}
|
|
|
|
struct storage_access {
|
|
#ifdef HAVE_NUMPY
|
|
using mp_int = adaptive_storage<>::mp_int;
|
|
using weight = adaptive_storage<>::weight;
|
|
template <typename T>
|
|
using array = adaptive_storage<>::array<T>;
|
|
|
|
struct dtype_visitor : public static_visitor<std::pair<int, python::object>> {
|
|
template <typename Array>
|
|
std::pair<int, python::object> operator()(const Array& /*unused*/) const {
|
|
std::pair<int, python::object> p;
|
|
p.first = sizeof(typename Array::value_type);
|
|
p.second = python::str("|u") + python::str(p.first);
|
|
return p;
|
|
}
|
|
std::pair<int, python::object> operator()(const array<void>& /*unused*/) const {
|
|
std::pair<int, python::object> p;
|
|
p.first = 0; // communicate that the type was array<void>
|
|
return p;
|
|
}
|
|
std::pair<int, python::object> operator()(const array<mp_int>& /*unused*/) const {
|
|
std::pair<int, python::object> p;
|
|
p.first = sizeof(double);
|
|
p.second = python::str("|f") + python::str(p.first);
|
|
return p;
|
|
}
|
|
std::pair<int, python::object> operator()(const array<weight>& /*unused*/) const {
|
|
std::pair<int, python::object> p;
|
|
p.first = sizeof(double);
|
|
p.second = python::str("|f") + python::str(p.first);
|
|
p.first *= -1; // communicate that the type was array<weight>
|
|
return p;
|
|
}
|
|
};
|
|
|
|
struct data_visitor : public static_visitor<python::object> {
|
|
const python::list& shapes;
|
|
const python::list& strides;
|
|
data_visitor(const python::list& sh, const python::list& st) : shapes(sh), strides(st) {}
|
|
template <typename Array>
|
|
python::object operator()(const Array& b) const {
|
|
return python::make_tuple(reinterpret_cast<uintptr_t>(b.begin()), false);
|
|
}
|
|
python::object operator()(const array<void>& /*unused*/) const {
|
|
return python::object(); // is never called
|
|
}
|
|
python::object operator()(const array<mp_int>& b) const {
|
|
// cannot pass cpp_int to numpy; make new
|
|
// double array, fill it and pass it
|
|
int dim = python::len(shapes);
|
|
npy_intp shapes2[BOOST_HISTOGRAM_AXIS_LIMIT];
|
|
for (int i = 0; i < dim; ++i) {
|
|
shapes2[i] = python::extract<npy_intp>(shapes[i]);
|
|
}
|
|
PyObject *ptr = PyArray_SimpleNew(dim, shapes2, NPY_DOUBLE);
|
|
for (int i = 0; i < dim; ++i) {
|
|
PyArray_STRIDES((PyArrayObject *)ptr)[i] = python::extract<npy_intp>(strides[i]);
|
|
}
|
|
auto *buf = static_cast<double *>(PyArray_DATA((PyArrayObject *)ptr));
|
|
for (std::size_t i = 0; i < b.size; ++i) {
|
|
buf[i] = static_cast<double>(b[i]);
|
|
}
|
|
return python::object(python::handle<>(ptr));
|
|
}
|
|
};
|
|
|
|
static python::object array_interface(dynamic_histogram<> &self) {
|
|
auto &b = self.storage_.buffer_;
|
|
python::dict d;
|
|
python::list shapes;
|
|
python::list strides;
|
|
auto dtype = apply_visitor(dtype_visitor(), b);
|
|
auto stride = dtype.first;
|
|
if (stride == 0) {
|
|
// buffer not created yet, do that now
|
|
auto a = array<uint8_t>(self.storage_.size());
|
|
dtype = dtype_visitor()(a);
|
|
b = std::move(a);
|
|
stride = dtype.first;
|
|
} else
|
|
if (stride < 0) {
|
|
// buffer is weight, needs special treatment
|
|
stride *= -1;
|
|
strides.append(stride);
|
|
stride *= 2;
|
|
shapes.append(2);
|
|
}
|
|
for (unsigned i = 0; i < self.dim(); ++i) {
|
|
const auto s = shape(self.axis(i));
|
|
shapes.append(s);
|
|
strides.append(stride);
|
|
stride *= s;
|
|
}
|
|
d["shape"] = python::tuple(shapes);
|
|
d["strides"] = python::tuple(strides);
|
|
d["typestr"] = dtype.second;
|
|
d["data"] = apply_visitor(data_visitor(shapes, strides), b);
|
|
return d;
|
|
}
|
|
#endif
|
|
};
|
|
|
|
void register_histogram() {
|
|
using namespace python;
|
|
using python::arg;
|
|
docstring_options dopt(true, true, false);
|
|
|
|
class_<dynamic_histogram<>, boost::shared_ptr<dynamic_histogram<>>>(
|
|
"histogram", "N-dimensional histogram for real-valued data.", no_init)
|
|
.def("__init__", raw_function(histogram_init),
|
|
":param axis args: axis objects"
|
|
"\nPass one or more axis objects to define"
|
|
"\nthe dimensions of the dynamic_histogram<>.")
|
|
// shadowed C++ ctors
|
|
.def(init<const dynamic_histogram<> &>())
|
|
#ifdef HAVE_NUMPY
|
|
.add_property("__array_interface__", &storage_access::array_interface)
|
|
#endif
|
|
.def("__len__", &dynamic_histogram<>::dim)
|
|
.def("__getitem__", histogram_axis)
|
|
.def("axis", histogram_axis, ":param int i: index of the axis\n"
|
|
":returns: axis object for axis i",
|
|
(arg("self"), arg("i") = 0))
|
|
.def("fill", raw_function(histogram_fill),
|
|
"Pass a sequence of values with a length n is"
|
|
"\nequal to the dimensions of the histogram,"
|
|
"\nand optionally a weight w for this fill"
|
|
"\n(*int* or *float*)."
|
|
"\n"
|
|
"\nIf Numpy support is enabled, values may also"
|
|
"\nbe a 2d-array of shape (m, n), where m is"
|
|
"\nthe number of tuples, and optionally"
|
|
"\nanother a second 1d-array w of shape (n,).")
|
|
.add_property("sum", &dynamic_histogram<>::sum)
|
|
.def("value", raw_function(histogram_value),
|
|
":param int args: indices of the bin"
|
|
"\n:return: count for the bin")
|
|
.def("variance", raw_function(histogram_variance),
|
|
":param int args: indices of the bin"
|
|
"\n:return: variance estimate for the bin")
|
|
.def("__repr__", histogram_repr,
|
|
":returns: string representation of the histogram")
|
|
.def(self == self)
|
|
.def(self += self)
|
|
.def_pickle(serialization_suite<dynamic_histogram<>>());
|
|
}
|
|
|
|
} // NS histogram
|
|
} // NS boost
|