mirror of
https://github.com/boostorg/histogram.git
synced 2026-01-30 07:52:11 +00:00
support passing individual arays and broadcasting in python histogram; also adapted interface in speed_numpy.py
This commit is contained in:
@@ -34,12 +34,6 @@ using dynamic_histogram = histogram<Dynamic, builtin_axes, adaptive_storage<>>;
|
||||
|
||||
namespace python {
|
||||
|
||||
#ifdef HAVE_NUMPY
|
||||
auto array_cast = [](handle<>& h) {
|
||||
return downcast<PyArrayObject>(h.get());
|
||||
};
|
||||
#endif
|
||||
|
||||
#ifdef HAVE_NUMPY
|
||||
class access {
|
||||
public:
|
||||
@@ -87,38 +81,38 @@ public:
|
||||
object operator()(const array<void>& b) const {
|
||||
// cannot pass non-existent memory to numpy; make new
|
||||
// zero-initialized uint8 array, and pass it
|
||||
int dim = len(shapes);
|
||||
auto dim = len(shapes);
|
||||
npy_intp shapes2[BOOST_HISTOGRAM_AXIS_LIMIT];
|
||||
for (int i = 0; i < dim; ++i) {
|
||||
for (auto i = 0; i < dim; ++i) {
|
||||
shapes2[i] = extract<npy_intp>(shapes[i]);
|
||||
}
|
||||
handle<> a(PyArray_SimpleNew(dim, shapes2, NPY_UINT8));
|
||||
for (int i = 0; i < dim; ++i) {
|
||||
PyArray_STRIDES(array_cast(a))[i] = extract<npy_intp>(strides[i]);
|
||||
auto *a = (PyArrayObject*)PyArray_SimpleNew(dim, shapes2, NPY_UINT8);
|
||||
for (auto i = 0; i < dim; ++i) {
|
||||
PyArray_STRIDES(a)[i] = extract<npy_intp>(strides[i]);
|
||||
}
|
||||
auto *buf = static_cast<uint8_t *>(PyArray_DATA(array_cast(a)));
|
||||
auto *buf = (uint8_t *)PyArray_DATA(a);
|
||||
std::fill(buf, buf + b.size, uint8_t(0));
|
||||
PyArray_CLEARFLAGS(array_cast(a), NPY_ARRAY_WRITEABLE);
|
||||
return object(a);
|
||||
PyArray_CLEARFLAGS(a, NPY_ARRAY_WRITEABLE);
|
||||
return object(handle<>((PyObject*)a));
|
||||
}
|
||||
object operator()(const array<mp_int>& b) const {
|
||||
// cannot pass cpp_int to numpy; make new
|
||||
// double array, fill it and pass it
|
||||
int dim = len(shapes);
|
||||
auto dim = len(shapes);
|
||||
npy_intp shapes2[BOOST_HISTOGRAM_AXIS_LIMIT];
|
||||
for (int i = 0; i < dim; ++i) {
|
||||
for (auto i = 0; i < dim; ++i) {
|
||||
shapes2[i] = extract<npy_intp>(shapes[i]);
|
||||
}
|
||||
handle<> a(PyArray_SimpleNew(dim, shapes2, NPY_DOUBLE));
|
||||
for (int i = 0; i < dim; ++i) {
|
||||
PyArray_STRIDES(array_cast(a))[i] = extract<npy_intp>(strides[i]);
|
||||
auto *a = (PyArrayObject*)PyArray_SimpleNew(dim, shapes2, NPY_DOUBLE);
|
||||
for (auto i = 0; i < dim; ++i) {
|
||||
PyArray_STRIDES(a)[i] = extract<npy_intp>(strides[i]);
|
||||
}
|
||||
auto *buf = static_cast<double *>(PyArray_DATA(array_cast(a)));
|
||||
for (std::size_t i = 0; i < b.size; ++i) {
|
||||
auto *buf = (double *)PyArray_DATA(a);
|
||||
for (auto i = 0ul; i < b.size; ++i) {
|
||||
buf[i] = static_cast<double>(b[i]);
|
||||
}
|
||||
PyArray_CLEARFLAGS(array_cast(a), NPY_ARRAY_WRITEABLE);
|
||||
return object(a);
|
||||
PyArray_CLEARFLAGS(a, NPY_ARRAY_WRITEABLE);
|
||||
return object(handle<>((PyObject*)a));
|
||||
}
|
||||
};
|
||||
|
||||
@@ -225,89 +219,55 @@ python::object histogram_init(python::tuple args, python::dict kwargs) {
|
||||
return pyinit(h);
|
||||
}
|
||||
|
||||
python::object histogram_fill(python::tuple args, python::dict kwargs) {
|
||||
const unsigned nargs = python::len(args);
|
||||
dynamic_histogram &self = python::extract<dynamic_histogram &>(args[0]);
|
||||
struct fetcher {
|
||||
char type = 0;
|
||||
union {
|
||||
PyArrayObject* a;
|
||||
double value;
|
||||
};
|
||||
|
||||
python::object ow;
|
||||
if (kwargs) {
|
||||
if (len(kwargs) > 1 || !kwargs.has_key("weight")) {
|
||||
PyErr_SetString(PyExc_RuntimeError, "only keyword weight allowed");
|
||||
python::throw_error_already_set();
|
||||
}
|
||||
ow = kwargs.get("weight");
|
||||
~fetcher() {
|
||||
if (type == 2) Py_DECREF((PyObject*)a);
|
||||
}
|
||||
|
||||
long connect(python::object o) {
|
||||
python::extract<double> get_double(o);
|
||||
if (get_double.check()) {
|
||||
type = 1;
|
||||
value = get_double();
|
||||
return 0;
|
||||
}
|
||||
#ifdef HAVE_NUMPY
|
||||
if (nargs == 2) {
|
||||
python::object o = args[1];
|
||||
if (PySequence_Check(o.ptr())) {
|
||||
// exception is thrown automatically if
|
||||
python::handle<> a(PyArray_FROM_OTF(o.ptr(), NPY_DOUBLE, NPY_ARRAY_IN_ARRAY));
|
||||
|
||||
npy_intp *dims = PyArray_DIMS(python::array_cast(a));
|
||||
switch (PyArray_NDIM(python::array_cast(a))) {
|
||||
case 1:
|
||||
if (self.dim() > 1) {
|
||||
PyErr_SetString(PyExc_ValueError, "array has to be two-dimensional");
|
||||
python::throw_error_already_set();
|
||||
}
|
||||
break;
|
||||
case 2:
|
||||
if (self.dim() != dims[1]) {
|
||||
PyErr_SetString(PyExc_ValueError,
|
||||
"size of second dimension does not match");
|
||||
python::throw_error_already_set();
|
||||
}
|
||||
break;
|
||||
default:
|
||||
PyErr_SetString(PyExc_ValueError, "array has wrong dimension");
|
||||
python::throw_error_already_set();
|
||||
}
|
||||
|
||||
if (!ow.is_none()) {
|
||||
if (PySequence_Check(ow.ptr())) {
|
||||
|
||||
// exception is thrown automatically if handle below receives null
|
||||
python::handle<> aw(
|
||||
PyArray_FROM_OTF(ow.ptr(), NPY_DOUBLE, NPY_ARRAY_IN_ARRAY));
|
||||
|
||||
if (PyArray_NDIM(python::array_cast(aw)) != 1) {
|
||||
PyErr_SetString(PyExc_ValueError,
|
||||
"array has to be one-dimensional");
|
||||
python::throw_error_already_set();
|
||||
}
|
||||
|
||||
if (PyArray_DIMS(python::array_cast(aw))[0] != dims[0]) {
|
||||
PyErr_SetString(PyExc_ValueError, "sizes do not match");
|
||||
python::throw_error_already_set();
|
||||
}
|
||||
|
||||
for (unsigned i = 0; i < dims[0]; ++i) {
|
||||
double *v = reinterpret_cast<double *>(PyArray_GETPTR1(python::array_cast(a), i));
|
||||
double *w = reinterpret_cast<double *>(PyArray_GETPTR1(python::array_cast(aw), i));
|
||||
self.fill(v, v + self.dim(), weight(*w));
|
||||
}
|
||||
|
||||
} else {
|
||||
PyErr_SetString(PyExc_ValueError, "weight is not a sequence");
|
||||
python::throw_error_already_set();
|
||||
}
|
||||
} else {
|
||||
for (unsigned i = 0; i < dims[0]; ++i) {
|
||||
double *v = reinterpret_cast<double *>(PyArray_GETPTR1(python::array_cast(a), i));
|
||||
self.fill(v, v + self.dim());
|
||||
}
|
||||
}
|
||||
|
||||
return python::object();
|
||||
a = (PyArrayObject*)PyArray_FROMANY(o.ptr(), NPY_DOUBLE, 1, 1, NPY_ARRAY_CARRAY);
|
||||
if (a) {
|
||||
type = 2;
|
||||
return PyArray_SHAPE(a)[0];
|
||||
}
|
||||
#endif
|
||||
PyErr_SetString(PyExc_ValueError, "cannot convert argument");
|
||||
python::throw_error_already_set();
|
||||
return 0;
|
||||
}
|
||||
#endif /* HAVE_NUMPY */
|
||||
|
||||
bool empty() const { return type == 0; }
|
||||
|
||||
double operator()(long i) const {
|
||||
#ifdef HAVE_NUMPY
|
||||
if (type == 2) {
|
||||
return *static_cast<double*>(PyArray_GETPTR1(a, i));
|
||||
}
|
||||
#endif
|
||||
return value;
|
||||
};
|
||||
};
|
||||
|
||||
python::object histogram_fill(python::tuple args, python::dict kwargs) {
|
||||
const auto nargs = python::len(args);
|
||||
dynamic_histogram &self = python::extract<dynamic_histogram &>(args[0]);
|
||||
|
||||
const unsigned dim = nargs - 1;
|
||||
if (dim != self.dim()) {
|
||||
PyErr_SetString(PyExc_RuntimeError, "wrong number of arguments");
|
||||
PyErr_SetString(PyExc_ValueError, "number of arguments and dimension do not match");
|
||||
python::throw_error_already_set();
|
||||
}
|
||||
|
||||
@@ -318,15 +278,48 @@ python::object histogram_fill(python::tuple args, python::dict kwargs) {
|
||||
python::throw_error_already_set();
|
||||
}
|
||||
|
||||
double v[BOOST_HISTOGRAM_AXIS_LIMIT];
|
||||
for (unsigned i = 0; i < dim; ++i)
|
||||
v[i] = python::extract<double>(args[1 + i]);
|
||||
fetcher fetch[BOOST_HISTOGRAM_AXIS_LIMIT];
|
||||
long n = 0;
|
||||
for (auto d = 0u; d < dim; ++d) {
|
||||
python::object o = python::extract<python::object>(args[1 + d]);
|
||||
const auto on = fetch[d].connect(o);
|
||||
if (on > 0) {
|
||||
if (n && on != n) {
|
||||
PyErr_SetString(PyExc_ValueError, "lengths of sequences do not match");
|
||||
python::throw_error_already_set();
|
||||
}
|
||||
n = on;
|
||||
}
|
||||
}
|
||||
|
||||
if (ow.is_none()) {
|
||||
self.fill(v, v + self.dim());
|
||||
} else {
|
||||
const double w = python::extract<double>(ow);
|
||||
self.fill(v, v + self.dim(), weight(w));
|
||||
double v[BOOST_HISTOGRAM_AXIS_LIMIT];
|
||||
fetcher fetch_weight;
|
||||
const auto nkwargs = python::len(kwargs);
|
||||
if (nkwargs > 0) {
|
||||
if (nkwargs > 1 || !kwargs.has_key("weight")) {
|
||||
PyErr_SetString(PyExc_RuntimeError, "only keyword weight allowed");
|
||||
python::throw_error_already_set();
|
||||
}
|
||||
python::object o = kwargs.get("weight");
|
||||
const auto on = fetch_weight.connect(o);
|
||||
if (on > 0) {
|
||||
if (n && on != n) {
|
||||
PyErr_SetString(PyExc_ValueError, "lengths of argument sequences do not match");
|
||||
python::throw_error_already_set();
|
||||
}
|
||||
n = on;
|
||||
}
|
||||
}
|
||||
|
||||
if (!n) ++n;
|
||||
for (auto i = 0l; i < n; ++i) {
|
||||
for (auto d = 0u; d < dim; ++d)
|
||||
v[d] = fetch[d](i);
|
||||
if (fetch_weight.empty()) {
|
||||
self.fill(v, v + dim);
|
||||
} else {
|
||||
self.fill(v, v + dim, weight(fetch_weight(i)));
|
||||
}
|
||||
}
|
||||
|
||||
return python::object();
|
||||
|
||||
Reference in New Issue
Block a user