From b2a2cc123dc0737acff24d3638d70f4e7319dea9 Mon Sep 17 00:00:00 2001 From: Hans Dembinski Date: Fri, 3 Nov 2017 16:26:33 +0100 Subject: [PATCH] fix --- test/speed_numpy.py | 18 +++++++++--------- 1 file changed, 9 insertions(+), 9 deletions(-) diff --git a/test/speed_numpy.py b/test/speed_numpy.py index 99e33dee..02b91049 100755 --- a/test/speed_numpy.py +++ b/test/speed_numpy.py @@ -40,20 +40,20 @@ def compare_2d(n, distrib): r = np.random.rand(n) else: r = 0.5 + 0.3 * np.random.randn(n) - r = r.reshape(n/2, 2) + r = r.reshape(2, n/2) best_numpy = float("infinity") best_boost = float("infinity") for k in xrange(50): t = timer() - w, xe, ye = np.histogram2d(r[:,0], r[:,1], bins=(100, 100), + w, xe, ye = np.histogram2d(r[0], r[1], bins=(100, 100), range=((0.0, 1.0), (0.0, 1.0))) t = timer() - t best_numpy = min(t, best_numpy) h = histogram(regular(100, 0, 1), regular(100, 0, 1)) t = timer() - h.fill(r[:,0], r[:,1]) + h.fill(r[0], r[1]) t = timer() - t best_boost = min(t, best_boost) assert(np.all(w == np.array(h)[:-2,:-2])) @@ -66,13 +66,13 @@ def compare_3d(n, distrib): r = np.random.rand(n) else: r = 0.3 * np.random.randn(n) - r = r.reshape(n/3, 3) + r = r.reshape(3, n/3) best_numpy = float("infinity") best_boost = float("infinity") for k in xrange(50): t = timer() - w, xe = np.histogramdd(r, bins=(100, 100, 100), + w, xe = np.histogramdd(r.T, bins=(100, 100, 100), range=((0.0, 1.0), (0.0, 1.0), (0.0, 1.0))) @@ -83,7 +83,7 @@ def compare_3d(n, distrib): regular(100, 0, 1), regular(100, 0, 1)) t = timer() - h.fill(r[:,0], r[:,1], r[:,2]) + h.fill(r[0], r[1], r[2]) t = timer() - t best_boost = min(t, best_boost) assert(np.all(w == np.array(h)[:-2,:-2,:-2])) @@ -96,13 +96,13 @@ def compare_6d(n, distrib): r = np.random.rand(n) else: r = 0.3 * np.random.randn(n) - r = r.reshape(n/6, 6) + r = r.reshape(6, n/6) best_numpy = float("infinity") best_boost = float("infinity") for k in xrange(50): t = timer() - w, xe = np.histogramdd(r, bins=(10, 10, 10, + w, xe = np.histogramdd(r.T, bins=(10, 10, 10, 10, 10, 10), range=((0.0, 1.0), (0.0, 1.0), @@ -120,7 +120,7 @@ def compare_6d(n, distrib): regular(10, 0, 1), regular(10, 0, 1)) t = timer() - h.fill(r[:,0], r[:,1], r[:,2], r[:,3], r[:,4], r[:,5]) + h.fill(r[0], r[1], r[2], r[3], r[4], r[5]) t = timer() - t best_boost = min(t, best_boost) assert(np.all(w == np.array(h)[:-2,:-2,:-2,:-2,:-2,:-2]))