mirror of
https://github.com/boostorg/histogram.git
synced 2026-01-30 07:52:11 +00:00
tabula rasa
This commit is contained in:
@@ -1,282 +0,0 @@
|
||||
// Copyright 2015-2016 Hans Dembinski
|
||||
//
|
||||
// Distributed under the Boost Software License, Version 1.0.
|
||||
// (See accompanying file LICENSE_1_0.txt
|
||||
// or copy at http://www.boost.org/LICENSE_1_0.txt)
|
||||
|
||||
#include "serialization_suite.hpp"
|
||||
#include <boost/histogram/axis.hpp>
|
||||
#include <boost/histogram/histogram.hpp>
|
||||
#include <boost/histogram/serialization.hpp>
|
||||
#include <boost/python.hpp>
|
||||
#include <boost/python/raw_function.hpp>
|
||||
#include <boost/foreach.hpp>
|
||||
#include <boost/shared_ptr.hpp>
|
||||
#ifdef HAVE_NUMPY
|
||||
# define NO_IMPORT_ARRAY
|
||||
# define PY_ARRAY_UNIQUE_SYMBOL boost_histogram_ARRAY_API
|
||||
# define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION
|
||||
# include <numpy/arrayobject.h>
|
||||
#endif
|
||||
|
||||
namespace boost {
|
||||
namespace histogram {
|
||||
|
||||
python::object
|
||||
histogram_init(python::tuple args, python::dict kwargs) {
|
||||
using namespace python;
|
||||
using python::tuple;
|
||||
|
||||
object self = args[0];
|
||||
object pyinit = self.attr("__init__");
|
||||
|
||||
if (kwargs) {
|
||||
PyErr_SetString(PyExc_RuntimeError, "no keyword arguments allowed");
|
||||
throw_error_already_set();
|
||||
}
|
||||
|
||||
// normal constructor
|
||||
basic_histogram::axes_type axes;
|
||||
for (unsigned i = 1, n = len(args); i < n; ++i) {
|
||||
object pa = args[i];
|
||||
extract<regular_axis> er(pa);
|
||||
if (er.check()) { axes.push_back(er()); continue; }
|
||||
extract<polar_axis> ep(pa);
|
||||
if (ep.check()) { axes.push_back(ep()); continue; }
|
||||
extract<variable_axis> ev(pa);
|
||||
if (ev.check()) { axes.push_back(ev()); continue; }
|
||||
extract<category_axis> ec(pa);
|
||||
if (ec.check()) { axes.push_back(ec()); continue; }
|
||||
extract<integer_axis> ei(pa);
|
||||
if (ei.check()) { axes.push_back(ei()); continue; }
|
||||
PyErr_SetString(PyExc_TypeError, "require an axis object");
|
||||
throw_error_already_set();
|
||||
}
|
||||
return pyinit(axes);
|
||||
}
|
||||
|
||||
python::object
|
||||
histogram_fill(python::tuple args, python::dict kwargs) {
|
||||
using namespace python;
|
||||
|
||||
const unsigned nargs = len(args);
|
||||
histogram& self = extract<histogram&>(args[0]);
|
||||
|
||||
object ow;
|
||||
if (kwargs) {
|
||||
if (len(kwargs) > 1 || !kwargs.has_key("w")) {
|
||||
PyErr_SetString(PyExc_RuntimeError, "only keyword w allowed");
|
||||
throw_error_already_set();
|
||||
}
|
||||
ow = kwargs.get("w");
|
||||
}
|
||||
|
||||
#ifdef HAVE_NUMPY
|
||||
if (nargs == 2) {
|
||||
object o = args[1];
|
||||
if (PySequence_Check(o.ptr())) {
|
||||
PyArrayObject* a = reinterpret_cast<PyArrayObject*>
|
||||
(PyArray_FROM_OTF(o.ptr(), NPY_DOUBLE, NPY_ARRAY_IN_ARRAY));
|
||||
if (!a) {
|
||||
PyErr_SetString(PyExc_ValueError, "could not convert sequence into array");
|
||||
throw_error_already_set();
|
||||
}
|
||||
|
||||
npy_intp* dims = PyArray_DIMS(a);
|
||||
switch (PyArray_NDIM(a)) {
|
||||
case 1:
|
||||
if (self.dim() > 1) {
|
||||
PyErr_SetString(PyExc_ValueError, "array has to be two-dimensional");
|
||||
throw_error_already_set();
|
||||
}
|
||||
break;
|
||||
case 2:
|
||||
if (self.dim() != dims[1])
|
||||
{
|
||||
PyErr_SetString(PyExc_ValueError, "size of second dimension does not match");
|
||||
throw_error_already_set();
|
||||
}
|
||||
break;
|
||||
default:
|
||||
PyErr_SetString(PyExc_ValueError, "array has wrong dimension");
|
||||
throw_error_already_set();
|
||||
}
|
||||
|
||||
if (!ow.is_none()) {
|
||||
if (PySequence_Check(ow.ptr())) {
|
||||
PyArrayObject* aw = reinterpret_cast<PyArrayObject*>
|
||||
(PyArray_FROM_OTF(ow.ptr(), NPY_DOUBLE, NPY_ARRAY_IN_ARRAY));
|
||||
if (!aw) {
|
||||
PyErr_SetString(PyExc_ValueError, "could not convert sequence into array");
|
||||
throw_error_already_set();
|
||||
}
|
||||
|
||||
if (PyArray_NDIM(aw) != 1) {
|
||||
PyErr_SetString(PyExc_ValueError, "array has to be one-dimensional");
|
||||
throw_error_already_set();
|
||||
}
|
||||
|
||||
if (PyArray_DIMS(aw)[0] != dims[0]) {
|
||||
PyErr_SetString(PyExc_ValueError, "sizes do not match");
|
||||
throw_error_already_set();
|
||||
}
|
||||
|
||||
for (unsigned i = 0; i < dims[0]; ++i) {
|
||||
double* v = reinterpret_cast<double*>(PyArray_GETPTR1(a, i) );
|
||||
double* w = reinterpret_cast<double*>(PyArray_GETPTR1(aw, i));
|
||||
self.wfill(v, v+self.dim(), *w);
|
||||
}
|
||||
|
||||
Py_DECREF(aw);
|
||||
} else {
|
||||
PyErr_SetString(PyExc_ValueError, "w is not a sequence");
|
||||
throw_error_already_set();
|
||||
}
|
||||
} else {
|
||||
for (unsigned i = 0; i < dims[0]; ++i) {
|
||||
double* v = reinterpret_cast<double*>(PyArray_GETPTR1(a, i));
|
||||
self.fill(v, v+self.dim());
|
||||
}
|
||||
}
|
||||
|
||||
Py_DECREF(a);
|
||||
return object();
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
const unsigned dim = nargs - 1;
|
||||
if (dim != self.dim()) {
|
||||
PyErr_SetString(PyExc_RuntimeError, "wrong number of arguments");
|
||||
throw_error_already_set();
|
||||
}
|
||||
|
||||
double v[BOOST_HISTOGRAM_AXIS_LIMIT];
|
||||
for (unsigned i = 0; i < dim; ++i)
|
||||
v[i] = extract<double>(args[1 + i]);
|
||||
|
||||
if (ow.is_none()) {
|
||||
self.fill(v, v+self.dim());
|
||||
|
||||
} else {
|
||||
const double w = extract<double>(ow);
|
||||
self.wfill(v, v+self.dim(), w);
|
||||
}
|
||||
|
||||
return object();
|
||||
}
|
||||
|
||||
python::object
|
||||
histogram_value(python::tuple args, python::dict kwargs) {
|
||||
using namespace python;
|
||||
const histogram& self = extract<const histogram&>(args[0]);
|
||||
|
||||
if (self.dim() != (len(args) - 1)) {
|
||||
PyErr_SetString(PyExc_RuntimeError, "wrong number of arguments");
|
||||
throw_error_already_set();
|
||||
}
|
||||
|
||||
if (kwargs) {
|
||||
PyErr_SetString(PyExc_ValueError, "no keyword arguments allowed");
|
||||
throw_error_already_set();
|
||||
}
|
||||
|
||||
int idx[BOOST_HISTOGRAM_AXIS_LIMIT];
|
||||
for (unsigned i = 0; i < self.dim(); ++i)
|
||||
idx[i] = extract<int>(args[1 + i]);
|
||||
|
||||
return object(self.value(idx, idx + self.dim()));
|
||||
}
|
||||
|
||||
python::object
|
||||
histogram_variance(python::tuple args, python::dict kwargs) {
|
||||
using namespace python;
|
||||
const histogram& self = extract<const histogram&>(args[0]);
|
||||
|
||||
if (self.dim() != (len(args) - 1)) {
|
||||
PyErr_SetString(PyExc_RuntimeError, "wrong number of arguments");
|
||||
throw_error_already_set();
|
||||
}
|
||||
|
||||
if (kwargs) {
|
||||
PyErr_SetString(PyExc_RuntimeError, "no keyword arguments allowed");
|
||||
throw_error_already_set();
|
||||
}
|
||||
|
||||
int idx[BOOST_HISTOGRAM_AXIS_LIMIT];
|
||||
for (unsigned i = 0; i < self.dim(); ++i)
|
||||
idx[i] = extract<int>(args[1 + i]);
|
||||
|
||||
return object(self.variance(idx, idx + self.dim()));
|
||||
}
|
||||
|
||||
class histogram_access {
|
||||
public:
|
||||
static
|
||||
python::dict
|
||||
histogram_array_interface(histogram& self) {
|
||||
python::dict d;
|
||||
python::list shape;
|
||||
for (unsigned i = 0; i < self.dim(); ++i)
|
||||
shape.append(self.shape(i));
|
||||
if (self.depth() == sizeof(detail::wtype)) {
|
||||
shape.append(2);
|
||||
d["typestr"] = python::str("<f") + python::str(sizeof(double));
|
||||
} else {
|
||||
d["typestr"] = python::str("<u") + python::str(self.depth());
|
||||
}
|
||||
d["shape"] = python::tuple(shape);
|
||||
d["data"] = python::make_tuple(reinterpret_cast<boost::uintptr_t>(self.buffer()), false);
|
||||
return d;
|
||||
}
|
||||
};
|
||||
|
||||
void register_histogram()
|
||||
{
|
||||
using namespace python;
|
||||
docstring_options dopt(true, true, false);
|
||||
|
||||
// used to pass arguments from raw python init to specialized C++ constructor
|
||||
class_<basic_histogram::axes_type>("axes", no_init);
|
||||
|
||||
class_<
|
||||
histogram, bases<basic_histogram>,
|
||||
shared_ptr<histogram>
|
||||
>("histogram",
|
||||
"N-dimensional histogram for real-valued data.",
|
||||
no_init)
|
||||
.def("__init__", raw_function(histogram_init),
|
||||
":param axis args: axis objects"
|
||||
"\nPass one or more axis objects to define"
|
||||
"\nthe dimensions of the histogram.")
|
||||
// shadowed C++ ctors
|
||||
.def(init<const basic_histogram::axes_type&>())
|
||||
.add_property("__array_interface__",
|
||||
&histogram_access::histogram_array_interface)
|
||||
.def("fill", raw_function(histogram_fill),
|
||||
"Pass a sequence of values with a length n is"
|
||||
"\nequal to the dimensions of the histogram,"
|
||||
"\nand optionally a weight w for this fill"
|
||||
"\n(*int* or *float*)."
|
||||
"\n"
|
||||
"\nIf Numpy support is enabled, values may also"
|
||||
"\nbe a 2d-array of shape (m, n), where m is"
|
||||
"\nthe number of tuples, and optionally"
|
||||
"\nanother a second 1d-array w of shape (n,).")
|
||||
.add_property("depth", &histogram::depth)
|
||||
.add_property("sum", &histogram::sum)
|
||||
.def("value", raw_function(histogram_value),
|
||||
":param int args: indices of the bin"
|
||||
"\n:return: count for the bin")
|
||||
.def("variance", raw_function(histogram_variance),
|
||||
":param int args: indices of the bin"
|
||||
"\n:return: variance estimate for the bin")
|
||||
.def(self == self)
|
||||
.def(self += self)
|
||||
.def(self + self)
|
||||
.def_pickle(serialization_suite<histogram>())
|
||||
;
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user