tabula rasa

This commit is contained in:
Hans Dembinski
2016-07-16 12:45:16 -04:00
parent ab91774765
commit 6f24a50fdd
70 changed files with 545 additions and 6631 deletions

View File

@@ -1,282 +0,0 @@
// Copyright 2015-2016 Hans Dembinski
//
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt
// or copy at http://www.boost.org/LICENSE_1_0.txt)
#include "serialization_suite.hpp"
#include <boost/histogram/axis.hpp>
#include <boost/histogram/histogram.hpp>
#include <boost/histogram/serialization.hpp>
#include <boost/python.hpp>
#include <boost/python/raw_function.hpp>
#include <boost/foreach.hpp>
#include <boost/shared_ptr.hpp>
#ifdef HAVE_NUMPY
# define NO_IMPORT_ARRAY
# define PY_ARRAY_UNIQUE_SYMBOL boost_histogram_ARRAY_API
# define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION
# include <numpy/arrayobject.h>
#endif
namespace boost {
namespace histogram {
python::object
histogram_init(python::tuple args, python::dict kwargs) {
using namespace python;
using python::tuple;
object self = args[0];
object pyinit = self.attr("__init__");
if (kwargs) {
PyErr_SetString(PyExc_RuntimeError, "no keyword arguments allowed");
throw_error_already_set();
}
// normal constructor
basic_histogram::axes_type axes;
for (unsigned i = 1, n = len(args); i < n; ++i) {
object pa = args[i];
extract<regular_axis> er(pa);
if (er.check()) { axes.push_back(er()); continue; }
extract<polar_axis> ep(pa);
if (ep.check()) { axes.push_back(ep()); continue; }
extract<variable_axis> ev(pa);
if (ev.check()) { axes.push_back(ev()); continue; }
extract<category_axis> ec(pa);
if (ec.check()) { axes.push_back(ec()); continue; }
extract<integer_axis> ei(pa);
if (ei.check()) { axes.push_back(ei()); continue; }
PyErr_SetString(PyExc_TypeError, "require an axis object");
throw_error_already_set();
}
return pyinit(axes);
}
python::object
histogram_fill(python::tuple args, python::dict kwargs) {
using namespace python;
const unsigned nargs = len(args);
histogram& self = extract<histogram&>(args[0]);
object ow;
if (kwargs) {
if (len(kwargs) > 1 || !kwargs.has_key("w")) {
PyErr_SetString(PyExc_RuntimeError, "only keyword w allowed");
throw_error_already_set();
}
ow = kwargs.get("w");
}
#ifdef HAVE_NUMPY
if (nargs == 2) {
object o = args[1];
if (PySequence_Check(o.ptr())) {
PyArrayObject* a = reinterpret_cast<PyArrayObject*>
(PyArray_FROM_OTF(o.ptr(), NPY_DOUBLE, NPY_ARRAY_IN_ARRAY));
if (!a) {
PyErr_SetString(PyExc_ValueError, "could not convert sequence into array");
throw_error_already_set();
}
npy_intp* dims = PyArray_DIMS(a);
switch (PyArray_NDIM(a)) {
case 1:
if (self.dim() > 1) {
PyErr_SetString(PyExc_ValueError, "array has to be two-dimensional");
throw_error_already_set();
}
break;
case 2:
if (self.dim() != dims[1])
{
PyErr_SetString(PyExc_ValueError, "size of second dimension does not match");
throw_error_already_set();
}
break;
default:
PyErr_SetString(PyExc_ValueError, "array has wrong dimension");
throw_error_already_set();
}
if (!ow.is_none()) {
if (PySequence_Check(ow.ptr())) {
PyArrayObject* aw = reinterpret_cast<PyArrayObject*>
(PyArray_FROM_OTF(ow.ptr(), NPY_DOUBLE, NPY_ARRAY_IN_ARRAY));
if (!aw) {
PyErr_SetString(PyExc_ValueError, "could not convert sequence into array");
throw_error_already_set();
}
if (PyArray_NDIM(aw) != 1) {
PyErr_SetString(PyExc_ValueError, "array has to be one-dimensional");
throw_error_already_set();
}
if (PyArray_DIMS(aw)[0] != dims[0]) {
PyErr_SetString(PyExc_ValueError, "sizes do not match");
throw_error_already_set();
}
for (unsigned i = 0; i < dims[0]; ++i) {
double* v = reinterpret_cast<double*>(PyArray_GETPTR1(a, i) );
double* w = reinterpret_cast<double*>(PyArray_GETPTR1(aw, i));
self.wfill(v, v+self.dim(), *w);
}
Py_DECREF(aw);
} else {
PyErr_SetString(PyExc_ValueError, "w is not a sequence");
throw_error_already_set();
}
} else {
for (unsigned i = 0; i < dims[0]; ++i) {
double* v = reinterpret_cast<double*>(PyArray_GETPTR1(a, i));
self.fill(v, v+self.dim());
}
}
Py_DECREF(a);
return object();
}
}
#endif
const unsigned dim = nargs - 1;
if (dim != self.dim()) {
PyErr_SetString(PyExc_RuntimeError, "wrong number of arguments");
throw_error_already_set();
}
double v[BOOST_HISTOGRAM_AXIS_LIMIT];
for (unsigned i = 0; i < dim; ++i)
v[i] = extract<double>(args[1 + i]);
if (ow.is_none()) {
self.fill(v, v+self.dim());
} else {
const double w = extract<double>(ow);
self.wfill(v, v+self.dim(), w);
}
return object();
}
python::object
histogram_value(python::tuple args, python::dict kwargs) {
using namespace python;
const histogram& self = extract<const histogram&>(args[0]);
if (self.dim() != (len(args) - 1)) {
PyErr_SetString(PyExc_RuntimeError, "wrong number of arguments");
throw_error_already_set();
}
if (kwargs) {
PyErr_SetString(PyExc_ValueError, "no keyword arguments allowed");
throw_error_already_set();
}
int idx[BOOST_HISTOGRAM_AXIS_LIMIT];
for (unsigned i = 0; i < self.dim(); ++i)
idx[i] = extract<int>(args[1 + i]);
return object(self.value(idx, idx + self.dim()));
}
python::object
histogram_variance(python::tuple args, python::dict kwargs) {
using namespace python;
const histogram& self = extract<const histogram&>(args[0]);
if (self.dim() != (len(args) - 1)) {
PyErr_SetString(PyExc_RuntimeError, "wrong number of arguments");
throw_error_already_set();
}
if (kwargs) {
PyErr_SetString(PyExc_RuntimeError, "no keyword arguments allowed");
throw_error_already_set();
}
int idx[BOOST_HISTOGRAM_AXIS_LIMIT];
for (unsigned i = 0; i < self.dim(); ++i)
idx[i] = extract<int>(args[1 + i]);
return object(self.variance(idx, idx + self.dim()));
}
class histogram_access {
public:
static
python::dict
histogram_array_interface(histogram& self) {
python::dict d;
python::list shape;
for (unsigned i = 0; i < self.dim(); ++i)
shape.append(self.shape(i));
if (self.depth() == sizeof(detail::wtype)) {
shape.append(2);
d["typestr"] = python::str("<f") + python::str(sizeof(double));
} else {
d["typestr"] = python::str("<u") + python::str(self.depth());
}
d["shape"] = python::tuple(shape);
d["data"] = python::make_tuple(reinterpret_cast<boost::uintptr_t>(self.buffer()), false);
return d;
}
};
void register_histogram()
{
using namespace python;
docstring_options dopt(true, true, false);
// used to pass arguments from raw python init to specialized C++ constructor
class_<basic_histogram::axes_type>("axes", no_init);
class_<
histogram, bases<basic_histogram>,
shared_ptr<histogram>
>("histogram",
"N-dimensional histogram for real-valued data.",
no_init)
.def("__init__", raw_function(histogram_init),
":param axis args: axis objects"
"\nPass one or more axis objects to define"
"\nthe dimensions of the histogram.")
// shadowed C++ ctors
.def(init<const basic_histogram::axes_type&>())
.add_property("__array_interface__",
&histogram_access::histogram_array_interface)
.def("fill", raw_function(histogram_fill),
"Pass a sequence of values with a length n is"
"\nequal to the dimensions of the histogram,"
"\nand optionally a weight w for this fill"
"\n(*int* or *float*)."
"\n"
"\nIf Numpy support is enabled, values may also"
"\nbe a 2d-array of shape (m, n), where m is"
"\nthe number of tuples, and optionally"
"\nanother a second 1d-array w of shape (n,).")
.add_property("depth", &histogram::depth)
.add_property("sum", &histogram::sum)
.def("value", raw_function(histogram_value),
":param int args: indices of the bin"
"\n:return: count for the bin")
.def("variance", raw_function(histogram_variance),
":param int args: indices of the bin"
"\n:return: variance estimate for the bin")
.def(self == self)
.def(self += self)
.def(self + self)
.def_pickle(serialization_suite<histogram>())
;
}
}
}