mirror of
https://github.com/boostorg/histogram.git
synced 2026-01-30 20:02:13 +00:00
adapting to boost structure, adding old docs (to be improved), drop reliance on calloc
This commit is contained in:
315
src/python/histogram.cpp
Normal file
315
src/python/histogram.cpp
Normal file
@@ -0,0 +1,315 @@
|
||||
// Copyright 2015-2016 Hans Dembinski
|
||||
//
|
||||
// Distributed under the Boost Software License, Version 1.0.
|
||||
// (See accompanying file LICENSE_1_0.txt
|
||||
// or copy at http://www.boost.org/LICENSE_1_0.txt)
|
||||
|
||||
#include "serialization_suite.hpp"
|
||||
#include <boost/histogram/axis.hpp>
|
||||
#include <boost/histogram/dynamic_histogram.hpp>
|
||||
#include <boost/histogram/utility.hpp>
|
||||
#include <boost/histogram/serialization.hpp>
|
||||
#include <boost/python.hpp>
|
||||
#include <boost/python/raw_function.hpp>
|
||||
#include <boost/foreach.hpp>
|
||||
#include <boost/shared_ptr.hpp>
|
||||
#ifdef HAVE_NUMPY
|
||||
# define NO_IMPORT_ARRAY
|
||||
# define PY_ARRAY_UNIQUE_SYMBOL boost_histogram_ARRAY_API
|
||||
# define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION
|
||||
# include <numpy/arrayobject.h>
|
||||
#endif
|
||||
|
||||
#ifndef BOOST_HISTOGRAM_AXIS_LIMIT
|
||||
#define BOOST_HISTOGRAM_AXIS_LIMIT 32
|
||||
#endif
|
||||
|
||||
namespace boost {
|
||||
namespace histogram {
|
||||
|
||||
struct axis_visitor : public static_visitor<python::object>
|
||||
{
|
||||
template <typename T>
|
||||
python::object operator()(const T& t) const { return python::object(T(t)); }
|
||||
};
|
||||
|
||||
python::object
|
||||
histogram_axis(const dynamic_histogram<>& self, unsigned i)
|
||||
{
|
||||
return apply_visitor(axis_visitor(), self.axis(i));
|
||||
}
|
||||
|
||||
python::object
|
||||
histogram_init(python::tuple args, python::dict kwargs) {
|
||||
using namespace python;
|
||||
using python::tuple;
|
||||
|
||||
object self = args[0];
|
||||
object pyinit = self.attr("__init__");
|
||||
|
||||
if (kwargs) {
|
||||
PyErr_SetString(PyExc_RuntimeError, "no keyword arguments allowed");
|
||||
throw_error_already_set();
|
||||
}
|
||||
|
||||
// normal constructor
|
||||
dynamic_histogram<>::axes_t axes;
|
||||
for (unsigned i = 1, n = len(args); i < n; ++i) {
|
||||
object pa = args[i];
|
||||
extract<regular_axis> er(pa);
|
||||
if (er.check()) { axes.push_back(er()); continue; }
|
||||
extract<polar_axis> ep(pa);
|
||||
if (ep.check()) { axes.push_back(ep()); continue; }
|
||||
extract<variable_axis> ev(pa);
|
||||
if (ev.check()) { axes.push_back(ev()); continue; }
|
||||
extract<category_axis> ec(pa);
|
||||
if (ec.check()) { axes.push_back(ec()); continue; }
|
||||
extract<integer_axis> ei(pa);
|
||||
if (ei.check()) { axes.push_back(ei()); continue; }
|
||||
std::string msg = "require an axis object, got ";
|
||||
msg += extract<std::string>(pa.attr("__class__").attr("__name__"))();
|
||||
PyErr_SetString(PyExc_TypeError, msg.c_str());
|
||||
throw_error_already_set();
|
||||
}
|
||||
return pyinit(std::move(axes));
|
||||
}
|
||||
|
||||
python::object
|
||||
histogram_fill(python::tuple args, python::dict kwargs) {
|
||||
using namespace python;
|
||||
|
||||
const unsigned nargs = len(args);
|
||||
dynamic_histogram<>& self = extract<dynamic_histogram<>&>(args[0]);
|
||||
|
||||
object ow;
|
||||
if (kwargs) {
|
||||
if (len(kwargs) > 1 || !kwargs.has_key("w")) {
|
||||
PyErr_SetString(PyExc_RuntimeError, "only keyword w allowed");
|
||||
throw_error_already_set();
|
||||
}
|
||||
ow = kwargs.get("w");
|
||||
}
|
||||
|
||||
#ifdef HAVE_NUMPY
|
||||
if (nargs == 2) {
|
||||
object o = args[1];
|
||||
if (PySequence_Check(o.ptr())) {
|
||||
PyArrayObject* a = reinterpret_cast<PyArrayObject*>
|
||||
(PyArray_FROM_OTF(o.ptr(), NPY_DOUBLE, NPY_ARRAY_IN_ARRAY));
|
||||
if (!a) {
|
||||
PyErr_SetString(PyExc_ValueError, "could not convert sequence into array");
|
||||
throw_error_already_set();
|
||||
}
|
||||
|
||||
npy_intp* dims = PyArray_DIMS(a);
|
||||
switch (PyArray_NDIM(a)) {
|
||||
case 1:
|
||||
if (self.dim() > 1) {
|
||||
PyErr_SetString(PyExc_ValueError, "array has to be two-dimensional");
|
||||
throw_error_already_set();
|
||||
}
|
||||
break;
|
||||
case 2:
|
||||
if (self.dim() != dims[1])
|
||||
{
|
||||
PyErr_SetString(PyExc_ValueError, "size of second dimension does not match");
|
||||
throw_error_already_set();
|
||||
}
|
||||
break;
|
||||
default:
|
||||
PyErr_SetString(PyExc_ValueError, "array has wrong dimension");
|
||||
throw_error_already_set();
|
||||
}
|
||||
|
||||
if (!ow.is_none()) {
|
||||
if (PySequence_Check(ow.ptr())) {
|
||||
PyArrayObject* aw = reinterpret_cast<PyArrayObject*>
|
||||
(PyArray_FROM_OTF(ow.ptr(), NPY_DOUBLE, NPY_ARRAY_IN_ARRAY));
|
||||
if (!aw) {
|
||||
PyErr_SetString(PyExc_ValueError, "could not convert sequence into array");
|
||||
throw_error_already_set();
|
||||
}
|
||||
|
||||
if (PyArray_NDIM(aw) != 1) {
|
||||
PyErr_SetString(PyExc_ValueError, "array has to be one-dimensional");
|
||||
throw_error_already_set();
|
||||
}
|
||||
|
||||
if (PyArray_DIMS(aw)[0] != dims[0]) {
|
||||
PyErr_SetString(PyExc_ValueError, "sizes do not match");
|
||||
throw_error_already_set();
|
||||
}
|
||||
|
||||
for (unsigned i = 0; i < dims[0]; ++i) {
|
||||
double* v = reinterpret_cast<double*>(PyArray_GETPTR1(a, i) );
|
||||
double* w = reinterpret_cast<double*>(PyArray_GETPTR1(aw, i));
|
||||
self.wfill(v, v+self.dim(), *w);
|
||||
}
|
||||
|
||||
Py_DECREF(aw);
|
||||
} else {
|
||||
PyErr_SetString(PyExc_ValueError, "w is not a sequence");
|
||||
throw_error_already_set();
|
||||
}
|
||||
} else {
|
||||
for (unsigned i = 0; i < dims[0]; ++i) {
|
||||
double* v = reinterpret_cast<double*>(PyArray_GETPTR1(a, i));
|
||||
self.fill(v, v+self.dim());
|
||||
}
|
||||
}
|
||||
|
||||
Py_DECREF(a);
|
||||
return object();
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
const unsigned dim = nargs - 1;
|
||||
if (dim != self.dim()) {
|
||||
PyErr_SetString(PyExc_RuntimeError, "wrong number of arguments");
|
||||
throw_error_already_set();
|
||||
}
|
||||
|
||||
double v[BOOST_HISTOGRAM_AXIS_LIMIT];
|
||||
for (unsigned i = 0; i < dim; ++i)
|
||||
v[i] = extract<double>(args[1 + i]);
|
||||
|
||||
if (ow.is_none()) {
|
||||
self.fill(v, v+self.dim());
|
||||
|
||||
} else {
|
||||
const double w = extract<double>(ow);
|
||||
self.wfill(v, v+self.dim(), w);
|
||||
}
|
||||
|
||||
return object();
|
||||
}
|
||||
|
||||
python::object
|
||||
histogram_value(python::tuple args, python::dict kwargs) {
|
||||
using namespace python;
|
||||
const dynamic_histogram<>& self = extract<const dynamic_histogram<>&>(args[0]);
|
||||
|
||||
if (self.dim() != (len(args) - 1)) {
|
||||
PyErr_SetString(PyExc_RuntimeError, "wrong number of arguments");
|
||||
throw_error_already_set();
|
||||
}
|
||||
|
||||
if (kwargs) {
|
||||
PyErr_SetString(PyExc_ValueError, "no keyword arguments allowed");
|
||||
throw_error_already_set();
|
||||
}
|
||||
|
||||
int idx[BOOST_HISTOGRAM_AXIS_LIMIT];
|
||||
for (unsigned i = 0; i < self.dim(); ++i)
|
||||
idx[i] = extract<int>(args[1 + i]);
|
||||
|
||||
return object(self.value(idx + 0, idx + self.dim()));
|
||||
}
|
||||
|
||||
python::object
|
||||
histogram_variance(python::tuple args, python::dict kwargs) {
|
||||
using namespace python;
|
||||
const dynamic_histogram<>& self = extract<const dynamic_histogram<>&>(args[0]);
|
||||
|
||||
if (self.dim() != (len(args) - 1)) {
|
||||
PyErr_SetString(PyExc_RuntimeError, "wrong number of arguments");
|
||||
throw_error_already_set();
|
||||
}
|
||||
|
||||
if (kwargs) {
|
||||
PyErr_SetString(PyExc_RuntimeError, "no keyword arguments allowed");
|
||||
throw_error_already_set();
|
||||
}
|
||||
|
||||
int idx[BOOST_HISTOGRAM_AXIS_LIMIT];
|
||||
for (unsigned i = 0; i < self.dim(); ++i)
|
||||
idx[i] = extract<int>(args[1 + i]);
|
||||
|
||||
return object(self.variance(idx + 0, idx + self.dim()));
|
||||
}
|
||||
|
||||
class histogram_access {
|
||||
public:
|
||||
static
|
||||
python::dict
|
||||
histogram_array_interface(dynamic_histogram<>& self) {
|
||||
python::dict d;
|
||||
python::list shapes;
|
||||
python::list strides;
|
||||
std::size_t stride = 1;
|
||||
if (self.depth() == sizeof(detail::weight_t)) {
|
||||
stride *= sizeof(double);
|
||||
d["typestr"] = python::str("|f") + python::str(stride);
|
||||
strides.append(stride);
|
||||
stride *= 2;
|
||||
shapes.append(2);
|
||||
} else {
|
||||
stride *= self.depth();
|
||||
d["typestr"] = python::str("|u") + python::str(stride);
|
||||
}
|
||||
for (unsigned i = 0; i < self.dim(); ++i) {
|
||||
shapes.append(shape(self.axis(i)));
|
||||
strides.append(stride);
|
||||
stride *= shape(self.axis(i));
|
||||
}
|
||||
d["shape"] = python::tuple(shapes);
|
||||
d["data"] = python::make_tuple(reinterpret_cast<uintptr_t>(self.data()), false);
|
||||
d["strides"] = python::tuple(strides);
|
||||
return d;
|
||||
}
|
||||
};
|
||||
|
||||
void register_histogram()
|
||||
{
|
||||
using namespace python;
|
||||
using python::arg;
|
||||
docstring_options dopt(true, true, false);
|
||||
|
||||
// used to pass arguments from raw python init to specialized C++ constructor
|
||||
class_<dynamic_histogram<>::axes_t>("axes_t", no_init);
|
||||
|
||||
class_<dynamic_histogram<>, boost::shared_ptr<dynamic_histogram<>>>("histogram",
|
||||
"N-dimensional histogram for real-valued data.",
|
||||
no_init)
|
||||
.def("__init__", raw_function(histogram_init),
|
||||
":param axis args: axis objects"
|
||||
"\nPass one or more axis objects to define"
|
||||
"\nthe dimensions of the dynamic_histogram<>.")
|
||||
// shadowed C++ ctors
|
||||
.def(init<const dynamic_histogram<>::axes_t&>())
|
||||
.add_property("__array_interface__",
|
||||
&histogram_access::histogram_array_interface)
|
||||
.add_property("dim", &dynamic_histogram<>::dim,
|
||||
"dimensions of the histogram (number of axes)")
|
||||
.def("axis", histogram_axis,
|
||||
":param int i: index of the axis\n"
|
||||
":returns: axis object for axis i",
|
||||
(arg("self"), arg("i") = 0))
|
||||
.def("fill", raw_function(histogram_fill),
|
||||
"Pass a sequence of values with a length n is"
|
||||
"\nequal to the dimensions of the histogram,"
|
||||
"\nand optionally a weight w for this fill"
|
||||
"\n(*int* or *float*)."
|
||||
"\n"
|
||||
"\nIf Numpy support is enabled, values may also"
|
||||
"\nbe a 2d-array of shape (m, n), where m is"
|
||||
"\nthe number of tuples, and optionally"
|
||||
"\nanother a second 1d-array w of shape (n,).")
|
||||
.add_property("depth", &dynamic_histogram<>::depth)
|
||||
.add_property("sum", &dynamic_histogram<>::sum)
|
||||
.def("value", raw_function(histogram_value),
|
||||
":param int args: indices of the bin"
|
||||
"\n:return: count for the bin")
|
||||
.def("variance", raw_function(histogram_variance),
|
||||
":param int args: indices of the bin"
|
||||
"\n:return: variance estimate for the bin")
|
||||
.def(self == self)
|
||||
.def(self += self)
|
||||
.def(self + self)
|
||||
.def_pickle(serialization_suite<dynamic_histogram<>>())
|
||||
;
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user