adapting to boost structure, adding old docs (to be improved), drop reliance on calloc

This commit is contained in:
Hans Dembinski
2017-01-20 08:47:08 +01:00
parent 323cbab568
commit 3b12a3cf81
57 changed files with 4049 additions and 107 deletions

315
src/python/histogram.cpp Normal file
View File

@@ -0,0 +1,315 @@
// Copyright 2015-2016 Hans Dembinski
//
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt
// or copy at http://www.boost.org/LICENSE_1_0.txt)
#include "serialization_suite.hpp"
#include <boost/histogram/axis.hpp>
#include <boost/histogram/dynamic_histogram.hpp>
#include <boost/histogram/utility.hpp>
#include <boost/histogram/serialization.hpp>
#include <boost/python.hpp>
#include <boost/python/raw_function.hpp>
#include <boost/foreach.hpp>
#include <boost/shared_ptr.hpp>
#ifdef HAVE_NUMPY
# define NO_IMPORT_ARRAY
# define PY_ARRAY_UNIQUE_SYMBOL boost_histogram_ARRAY_API
# define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION
# include <numpy/arrayobject.h>
#endif
#ifndef BOOST_HISTOGRAM_AXIS_LIMIT
#define BOOST_HISTOGRAM_AXIS_LIMIT 32
#endif
namespace boost {
namespace histogram {
struct axis_visitor : public static_visitor<python::object>
{
template <typename T>
python::object operator()(const T& t) const { return python::object(T(t)); }
};
python::object
histogram_axis(const dynamic_histogram<>& self, unsigned i)
{
return apply_visitor(axis_visitor(), self.axis(i));
}
python::object
histogram_init(python::tuple args, python::dict kwargs) {
using namespace python;
using python::tuple;
object self = args[0];
object pyinit = self.attr("__init__");
if (kwargs) {
PyErr_SetString(PyExc_RuntimeError, "no keyword arguments allowed");
throw_error_already_set();
}
// normal constructor
dynamic_histogram<>::axes_t axes;
for (unsigned i = 1, n = len(args); i < n; ++i) {
object pa = args[i];
extract<regular_axis> er(pa);
if (er.check()) { axes.push_back(er()); continue; }
extract<polar_axis> ep(pa);
if (ep.check()) { axes.push_back(ep()); continue; }
extract<variable_axis> ev(pa);
if (ev.check()) { axes.push_back(ev()); continue; }
extract<category_axis> ec(pa);
if (ec.check()) { axes.push_back(ec()); continue; }
extract<integer_axis> ei(pa);
if (ei.check()) { axes.push_back(ei()); continue; }
std::string msg = "require an axis object, got ";
msg += extract<std::string>(pa.attr("__class__").attr("__name__"))();
PyErr_SetString(PyExc_TypeError, msg.c_str());
throw_error_already_set();
}
return pyinit(std::move(axes));
}
python::object
histogram_fill(python::tuple args, python::dict kwargs) {
using namespace python;
const unsigned nargs = len(args);
dynamic_histogram<>& self = extract<dynamic_histogram<>&>(args[0]);
object ow;
if (kwargs) {
if (len(kwargs) > 1 || !kwargs.has_key("w")) {
PyErr_SetString(PyExc_RuntimeError, "only keyword w allowed");
throw_error_already_set();
}
ow = kwargs.get("w");
}
#ifdef HAVE_NUMPY
if (nargs == 2) {
object o = args[1];
if (PySequence_Check(o.ptr())) {
PyArrayObject* a = reinterpret_cast<PyArrayObject*>
(PyArray_FROM_OTF(o.ptr(), NPY_DOUBLE, NPY_ARRAY_IN_ARRAY));
if (!a) {
PyErr_SetString(PyExc_ValueError, "could not convert sequence into array");
throw_error_already_set();
}
npy_intp* dims = PyArray_DIMS(a);
switch (PyArray_NDIM(a)) {
case 1:
if (self.dim() > 1) {
PyErr_SetString(PyExc_ValueError, "array has to be two-dimensional");
throw_error_already_set();
}
break;
case 2:
if (self.dim() != dims[1])
{
PyErr_SetString(PyExc_ValueError, "size of second dimension does not match");
throw_error_already_set();
}
break;
default:
PyErr_SetString(PyExc_ValueError, "array has wrong dimension");
throw_error_already_set();
}
if (!ow.is_none()) {
if (PySequence_Check(ow.ptr())) {
PyArrayObject* aw = reinterpret_cast<PyArrayObject*>
(PyArray_FROM_OTF(ow.ptr(), NPY_DOUBLE, NPY_ARRAY_IN_ARRAY));
if (!aw) {
PyErr_SetString(PyExc_ValueError, "could not convert sequence into array");
throw_error_already_set();
}
if (PyArray_NDIM(aw) != 1) {
PyErr_SetString(PyExc_ValueError, "array has to be one-dimensional");
throw_error_already_set();
}
if (PyArray_DIMS(aw)[0] != dims[0]) {
PyErr_SetString(PyExc_ValueError, "sizes do not match");
throw_error_already_set();
}
for (unsigned i = 0; i < dims[0]; ++i) {
double* v = reinterpret_cast<double*>(PyArray_GETPTR1(a, i) );
double* w = reinterpret_cast<double*>(PyArray_GETPTR1(aw, i));
self.wfill(v, v+self.dim(), *w);
}
Py_DECREF(aw);
} else {
PyErr_SetString(PyExc_ValueError, "w is not a sequence");
throw_error_already_set();
}
} else {
for (unsigned i = 0; i < dims[0]; ++i) {
double* v = reinterpret_cast<double*>(PyArray_GETPTR1(a, i));
self.fill(v, v+self.dim());
}
}
Py_DECREF(a);
return object();
}
}
#endif
const unsigned dim = nargs - 1;
if (dim != self.dim()) {
PyErr_SetString(PyExc_RuntimeError, "wrong number of arguments");
throw_error_already_set();
}
double v[BOOST_HISTOGRAM_AXIS_LIMIT];
for (unsigned i = 0; i < dim; ++i)
v[i] = extract<double>(args[1 + i]);
if (ow.is_none()) {
self.fill(v, v+self.dim());
} else {
const double w = extract<double>(ow);
self.wfill(v, v+self.dim(), w);
}
return object();
}
python::object
histogram_value(python::tuple args, python::dict kwargs) {
using namespace python;
const dynamic_histogram<>& self = extract<const dynamic_histogram<>&>(args[0]);
if (self.dim() != (len(args) - 1)) {
PyErr_SetString(PyExc_RuntimeError, "wrong number of arguments");
throw_error_already_set();
}
if (kwargs) {
PyErr_SetString(PyExc_ValueError, "no keyword arguments allowed");
throw_error_already_set();
}
int idx[BOOST_HISTOGRAM_AXIS_LIMIT];
for (unsigned i = 0; i < self.dim(); ++i)
idx[i] = extract<int>(args[1 + i]);
return object(self.value(idx + 0, idx + self.dim()));
}
python::object
histogram_variance(python::tuple args, python::dict kwargs) {
using namespace python;
const dynamic_histogram<>& self = extract<const dynamic_histogram<>&>(args[0]);
if (self.dim() != (len(args) - 1)) {
PyErr_SetString(PyExc_RuntimeError, "wrong number of arguments");
throw_error_already_set();
}
if (kwargs) {
PyErr_SetString(PyExc_RuntimeError, "no keyword arguments allowed");
throw_error_already_set();
}
int idx[BOOST_HISTOGRAM_AXIS_LIMIT];
for (unsigned i = 0; i < self.dim(); ++i)
idx[i] = extract<int>(args[1 + i]);
return object(self.variance(idx + 0, idx + self.dim()));
}
class histogram_access {
public:
static
python::dict
histogram_array_interface(dynamic_histogram<>& self) {
python::dict d;
python::list shapes;
python::list strides;
std::size_t stride = 1;
if (self.depth() == sizeof(detail::weight_t)) {
stride *= sizeof(double);
d["typestr"] = python::str("|f") + python::str(stride);
strides.append(stride);
stride *= 2;
shapes.append(2);
} else {
stride *= self.depth();
d["typestr"] = python::str("|u") + python::str(stride);
}
for (unsigned i = 0; i < self.dim(); ++i) {
shapes.append(shape(self.axis(i)));
strides.append(stride);
stride *= shape(self.axis(i));
}
d["shape"] = python::tuple(shapes);
d["data"] = python::make_tuple(reinterpret_cast<uintptr_t>(self.data()), false);
d["strides"] = python::tuple(strides);
return d;
}
};
void register_histogram()
{
using namespace python;
using python::arg;
docstring_options dopt(true, true, false);
// used to pass arguments from raw python init to specialized C++ constructor
class_<dynamic_histogram<>::axes_t>("axes_t", no_init);
class_<dynamic_histogram<>, boost::shared_ptr<dynamic_histogram<>>>("histogram",
"N-dimensional histogram for real-valued data.",
no_init)
.def("__init__", raw_function(histogram_init),
":param axis args: axis objects"
"\nPass one or more axis objects to define"
"\nthe dimensions of the dynamic_histogram<>.")
// shadowed C++ ctors
.def(init<const dynamic_histogram<>::axes_t&>())
.add_property("__array_interface__",
&histogram_access::histogram_array_interface)
.add_property("dim", &dynamic_histogram<>::dim,
"dimensions of the histogram (number of axes)")
.def("axis", histogram_axis,
":param int i: index of the axis\n"
":returns: axis object for axis i",
(arg("self"), arg("i") = 0))
.def("fill", raw_function(histogram_fill),
"Pass a sequence of values with a length n is"
"\nequal to the dimensions of the histogram,"
"\nand optionally a weight w for this fill"
"\n(*int* or *float*)."
"\n"
"\nIf Numpy support is enabled, values may also"
"\nbe a 2d-array of shape (m, n), where m is"
"\nthe number of tuples, and optionally"
"\nanother a second 1d-array w of shape (n,).")
.add_property("depth", &dynamic_histogram<>::depth)
.add_property("sum", &dynamic_histogram<>::sum)
.def("value", raw_function(histogram_value),
":param int args: indices of the bin"
"\n:return: count for the bin")
.def("variance", raw_function(histogram_variance),
":param int args: indices of the bin"
"\n:return: variance estimate for the bin")
.def(self == self)
.def(self += self)
.def(self + self)
.def_pickle(serialization_suite<dynamic_histogram<>>())
;
}
}
}