8 #ifndef BOOST_GIL_IMAGE_PROCESSING_THRESHOLD_HPP 9 #define BOOST_GIL_IMAGE_PROCESSING_THRESHOLD_HPP 13 #include <type_traits> 19 #include <boost/assert.hpp> 21 #include <boost/gil/image.hpp> 22 #include <boost/gil/extension/numeric/kernel.hpp> 23 #include <boost/gil/extension/numeric/convolve.hpp> 24 #include <boost/gil/image_processing/numeric.hpp> 26 namespace boost {
namespace gil {
32 typename SourceChannelT,
33 typename ResultChannelT,
38 void threshold_impl(SrcView
const& src_view, DstView
const& dst_view, Operator
const& threshold_op)
40 gil_function_requires<ImageViewConcept<SrcView>>();
41 gil_function_requires<MutableImageViewConcept<DstView>>();
42 static_assert(color_spaces_are_compatible
44 typename color_space_type<SrcView>::type,
45 typename color_space_type<DstView>::type
46 >::value,
"Source and destination views must have pixels with the same color space");
49 for (std::ptrdiff_t y = 0; y < src_view.height(); y++)
51 typename SrcView::x_iterator src_it = src_view.row_begin(y);
52 typename DstView::x_iterator dst_it = dst_view.row_begin(y);
54 for (std::ptrdiff_t x = 0; x < src_view.width(); x++)
56 static_transform(src_it[x], dst_it[x], threshold_op);
91 enum class threshold_adaptive_method
108 template <
typename SrcView,
typename DstView>
110 SrcView
const& src_view,
111 DstView
const& dst_view,
123 detail::threshold_impl<source_channel_t, result_channel_t>(src_view, dst_view,
124 [threshold_value, max_value](source_channel_t px) -> result_channel_t {
125 return px > threshold_value ? max_value : 0;
130 detail::threshold_impl<source_channel_t, result_channel_t>(src_view, dst_view,
131 [threshold_value, max_value](source_channel_t px) -> result_channel_t {
132 return px > threshold_value ? 0 : max_value;
147 template <
typename SrcView,
typename DstView>
149 SrcView
const& src_view,
150 DstView
const& dst_view,
158 result_channel_t max_value = (std::numeric_limits<result_channel_t>::max)();
159 threshold_binary(src_view, dst_view, threshold_value, max_value, direction);
173 template <
typename SrcView,
typename DstView>
175 SrcView
const& src_view,
176 DstView
const& dst_view,
186 std::function<result_channel_t(source_channel_t)> threshold_logic;
192 detail::threshold_impl<source_channel_t, result_channel_t>(src_view, dst_view,
193 [threshold_value](source_channel_t px) -> result_channel_t {
194 return px > threshold_value ? threshold_value : px;
199 detail::threshold_impl<source_channel_t, result_channel_t>(src_view, dst_view,
200 [threshold_value](source_channel_t px) -> result_channel_t {
201 return px > threshold_value ? px : threshold_value;
209 detail::threshold_impl<source_channel_t, result_channel_t>(src_view, dst_view,
210 [threshold_value](source_channel_t px) -> result_channel_t {
211 return px > threshold_value ? px : 0;
216 detail::threshold_impl<source_channel_t, result_channel_t>(src_view, dst_view,
217 [threshold_value](source_channel_t px) -> result_channel_t {
218 return px > threshold_value ? 0 : px;
226 template <
typename SrcView,
typename DstView>
227 void otsu_impl(SrcView
const& src_view, DstView
const& dst_view,
threshold_direction direction)
232 std::array<std::size_t, 256> histogram{};
235 auto min = (std::numeric_limits<source_channel_t>::max)(),
236 max = (std::numeric_limits<source_channel_t>::min)();
238 if (
sizeof(source_channel_t) > 1 || std::is_signed<source_channel_t>::value)
241 for (std::ptrdiff_t y = 0; y < src_view.height(); y++)
243 typename SrcView::x_iterator src_it = src_view.row_begin(y);
244 for (std::ptrdiff_t x = 0; x < src_view.width(); x++)
246 if (src_it[x] < min) min = src_it[x];
247 if (src_it[x] > min) min = src_it[x];
252 for (std::ptrdiff_t y = 0; y < src_view.height(); y++)
254 typename SrcView::x_iterator src_it = src_view.row_begin(y);
256 for (std::ptrdiff_t x = 0; x < src_view.width(); x++)
258 histogram[((src_it[x] - min) * 255) / (max - min)]++;
265 for (std::ptrdiff_t y = 0; y < src_view.height(); y++)
267 typename SrcView::x_iterator src_it = src_view.row_begin(y);
269 for (std::ptrdiff_t x = 0; x < src_view.width(); x++)
271 histogram[src_it[x]]++;
287 std::ptrdiff_t total_pixel = src_view.height() * src_view.width();
288 std::ptrdiff_t sum_total = 0, sum_back = 0;
289 std::size_t weight_back = 0, weight_fore = 0,
threshold = 0;
290 double var_max = 0, mean_back, mean_fore, var_intra_class;
292 for (std::size_t t = 0; t < 256; t++)
294 sum_total += t * histogram[t];
297 for (
int t = 0; t < 256; t++)
299 weight_back += histogram[t];
300 if (weight_back == 0)
continue;
302 weight_fore = total_pixel - weight_back;
303 if (weight_fore == 0)
break;
305 sum_back += t * histogram[t];
307 mean_back = sum_back / weight_back;
308 mean_fore = (sum_total - sum_back) / weight_fore;
311 var_intra_class = weight_back * weight_fore * (mean_back - mean_fore) * (mean_back - mean_fore);
314 if (var_intra_class > var_max) {
315 var_max = var_intra_class;
319 if (
sizeof(source_channel_t) > 1 && std::is_unsigned<source_channel_t>::value)
329 template <
typename SrcView,
typename DstView>
330 void threshold_optimal
332 SrcView
const& src_view,
333 DstView
const& dst_view,
340 for (std::size_t i = 0; i < src_view.num_channels(); i++)
343 (nth_channel_view(src_view, i), nth_channel_view(dst_view, i), direction);
352 typename SourceChannelT,
353 typename ResultChannelT,
360 SrcView
const& src_view,
361 SrcView
const& convolved_view,
362 DstView
const& dst_view,
363 Operator
const& threshold_op
367 gil_function_requires<ImageViewConcept<SrcView>>();
368 gil_function_requires<MutableImageViewConcept<DstView>>();
370 static_assert(color_spaces_are_compatible
372 typename color_space_type<SrcView>::type,
373 typename color_space_type<DstView>::type
374 >::value,
"Source and destination views must have pixels with the same color space");
377 for (std::ptrdiff_t y = 0; y < src_view.height(); y++)
379 typename SrcView::x_iterator src_it = src_view.row_begin(y);
380 typename SrcView::x_iterator convolved_it = convolved_view.row_begin(y);
381 typename DstView::x_iterator dst_it = dst_view.row_begin(y);
383 for (std::ptrdiff_t x = 0; x < src_view.width(); x++)
385 static_transform(src_it[x], convolved_it[x], dst_it[x], threshold_op);
391 template <
typename SrcView,
typename DstView>
392 void threshold_adaptive
394 SrcView
const& src_view,
395 DstView
const& dst_view,
397 std::size_t kernel_size,
398 threshold_adaptive_method method = threshold_adaptive_method::mean,
403 BOOST_ASSERT_MSG((kernel_size % 2 != 0),
"Kernel size must be an odd number");
409 typename image<typename SrcView::value_type>::view_t temp_view =
view(temp_img);
410 SrcView temp_conv(temp_view);
412 if (method == threshold_adaptive_method::mean)
414 std::vector<float> mean_kernel_values(kernel_size, 1.0f/kernel_size);
415 kernel_1d<float> kernel(mean_kernel_values.begin(), kernel_size, kernel_size/2);
417 convolve_1d<pixel<float, typename SrcView::value_type::layout_t>>(
418 src_view, kernel, temp_view
421 else if (method == threshold_adaptive_method::gaussian)
423 gray32f_image_t gaussian_kernel_values(kernel_size, kernel_size);
426 gray32f_view_t gaussian_kernel_view =
view(gaussian_kernel_values);
427 kernel_2d<float> kernel(
433 std::transform(gaussian_kernel_view.begin(), gaussian_kernel_view.end(), kernel.begin(),
434 [](gray32f_pixel_t
pixel) ->
float {
return pixel.at(std::integral_constant<int, 0>{}); }
437 convolve_2d(src_view, kernel, temp_view);
442 detail::adaptive_impl<source_channel_t, result_channel_t>(src_view, temp_conv, dst_view,
443 [max_value, constant](source_channel_t px, source_channel_t
threshold) -> result_channel_t
444 {
return px > (
threshold - constant) ? max_value : 0; });
448 detail::adaptive_impl<source_channel_t, result_channel_t>(src_view, temp_conv, dst_view,
449 [max_value, constant](source_channel_t px, source_channel_t
threshold) -> result_channel_t
450 {
return px > (
threshold - constant) ? 0 : max_value; });
454 template <
typename SrcView,
typename DstView>
455 void threshold_adaptive
457 SrcView
const& src_view,
458 DstView
const& dst_view,
459 std::size_t kernel_size,
460 threshold_adaptive_method method = threshold_adaptive_method::mean,
468 result_channel_t max_value = (std::numeric_limits<result_channel_t>::max)();
470 threshold_adaptive(src_view, dst_view, max_value, kernel_size, method, direction, constant);
477 #endif //BOOST_GIL_IMAGE_PROCESSING_THRESHOLD_HPP Definition: algorithm.hpp:30
Represents a pixel value (a container of channels). Models: HomogeneousColorBaseValueConcept, PixelValueConcept, HomogeneousPixelBasedConcept.
Definition: metafunctions.hpp:23
void threshold_binary(SrcView const &src_view, DstView const &dst_view, typename channel_type< DstView >::type threshold_value, threshold_direction direction=threshold_direction::regular)
Applies fixed threshold to each pixel of image view. Performs image binarization by thresholding chan...
Definition: threshold.hpp:148
threshold_truncate_mode
TODO.
Definition: threshold.hpp:85
threshold_direction
Definition: threshold.hpp:69
threshold_optimal_value
Method of optimal threshold value calculation.
Definition: threshold.hpp:77
Consider values less than or equal to threshold value.
container interface over image view. Models ImageConcept, PixelBasedConcept
Definition: image.hpp:40
Definition: color_convert.hpp:31
const image< Pixel, IsPlanar, Alloc >::view_t & view(image< Pixel, IsPlanar, Alloc > &img)
Returns the non-constant-pixel view of an image.
Definition: image.hpp:443
void threshold_truncate(SrcView const &src_view, DstView const &dst_view, typename channel_type< DstView >::type threshold_value, threshold_truncate_mode mode=threshold_truncate_mode::threshold, threshold_direction direction=threshold_direction::regular)
Applies truncating threshold to each pixel of image view. Takes an image view and performes truncatin...
Definition: threshold.hpp:174
Consider values greater than threshold value.
void generate_gaussian_kernel(boost::gil::gray32f_view_t dst, double sigma)
Generate Gaussian kernelFills supplied view with values taken from Gaussian distribution. See https://en.wikipedia.org/wiki/Gaussian_blur.
Definition: numeric.hpp:185