// Copyright Nat Goodspeed 2015. // Distributed under the Boost Software License, Version 1.0. // (See accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) #include #include #include #include #include #include #include #include #include /***************************************************************************** * shared_ready_queue scheduler *****************************************************************************/ // This simple scheduler is like round_robin, except that it shares a common // ready queue among all participating threads. A thread participates in this // pool by executing use_scheduling_algorithm() before any // other Boost.Fiber operation. class shared_ready_queue : public boost::fibers::sched_algorithm { private: typedef std::queue rqueue_t; // The important point about this ready queue is that it's a class static, // common to all instances of shared_ready_queue. static rqueue_t rqueue_; // so is this mutex static std::mutex mutex_; typedef std::unique_lock lock_t; // Reserve a separate, scheduler-specific slot for this thread's main // fiber. When we're passed the main fiber, stash it there instead of in // the shared queue: it would be Bad News for thread B to retrieve and // attempt to execute thread A's main fiber. This slot might be empty // (nullptr) or full: pick_next() must only return the main fiber's // context* after it has been passed to awakened(). boost::fibers::context* main_fiber; public: shared_ready_queue(): main_fiber(nullptr) {} virtual void awakened( boost::fibers::context * f) { BOOST_ASSERT( nullptr != f); // recognize when we're passed this thread's main fiber if (f->is_main_context()) { // never put this thread's main fiber on the queue // stash it in separate slot main_fiber = f; } else { // ordinary fiber, enqueue on shared queue lock_t lock(mutex_); rqueue_.push( f); } } virtual boost::fibers::context * pick_next() { lock_t lock(mutex_); boost::fibers::context * victim; if ( ! rqueue_.empty() ) { // good, we have an item in the ready queue, pop it victim = rqueue_.front(); rqueue_.pop(); BOOST_ASSERT( nullptr != victim); } else { // nothing in the ready queue, return main_fiber victim = main_fiber; // once we've returned main_fiber, clear the slot main_fiber = nullptr; } return victim; } virtual std::size_t ready_fibers() const noexcept { lock_t lock(mutex_); return rqueue_.size() + (main_fiber? 1 : 0); } }; shared_ready_queue::rqueue_t shared_ready_queue::rqueue_; std::mutex shared_ready_queue::mutex_; /***************************************************************************** * example fiber function *****************************************************************************/ void whatevah(char me) { std::thread::id my_thread = std::this_thread::get_id(); { std::ostringstream buffer; //buffer << "fiber " << me << " started on thread " << my_thread << '\n'; std::cout << buffer.str() << std::flush; } for (unsigned i = 0; i < 5; ++i) { boost::this_fiber::yield(); std::thread::id new_thread = std::this_thread::get_id(); if (new_thread != my_thread) { my_thread = new_thread; std::ostringstream buffer; //buffer << "fiber " << me << " switched to thread " << my_thread << '\n'; std::cout << buffer.str() << std::flush; } } } /***************************************************************************** * example thread function *****************************************************************************/ // Wait until all running fibers have completed. This works because we happen // to know that all example fibers use yield(), which leaves them in ready // state. A fiber blocked on a synchronization object is invisible to // ready_fibers(). void drain() { // THIS fiber is running, so won't be counted among "ready" fibers while (boost::fibers::ready_fibers()) { boost::this_fiber::yield(); } } void thread() { boost::fibers::use_scheduling_algorithm(); drain(); } /***************************************************************************** * main() *****************************************************************************/ int main( int argc, char *argv[]) { // use shared_ready_queue for main thread too, so we launch new fibers // into shared pool boost::fibers::use_scheduling_algorithm(); for ( int i = 0; i < 10; ++i) { // launch a number of fibers for (char c : std::string("abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789")) { boost::fibers::fiber([c](){ whatevah(c); }).detach(); } // launch a couple threads to help process them std::thread threads[] = { std::thread(thread), std::thread(thread), std::thread(thread), std::thread(thread), std::thread(thread) }; // drain running fibers drain(); // wait for threads to terminate for (std::thread& t : threads) { t.join(); } } return EXIT_SUCCESS; }