2
0
mirror of https://github.com/boostorg/context.git synced 2026-01-19 04:02:17 +00:00
Files
context/doc/execution_context.qbk
2016-01-12 20:29:58 +01:00

469 lines
16 KiB
Plaintext

[/
Copyright Oliver Kowalke 2014.
Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt
]
[#econtext]
[section:econtext Class execution_context]
Class __econtext__ encapsulates __fcontext__ and manages the context' stack
(allocation/deallocation).
__econtext__ allocates the context stack (using its [link stack __stack_allocator__]
argument) and creates a control structure on top of it. This structure
controls the life time of the stack. Instances of __econtext__, associated
with a specific context, share the ownership of the control structure.
If the last reference goes out of scope, the control structure is destroyed and
the stack gets deallocated via the __stack_allocator__.
__econtext__ is copy-constructible, move-constructible, copy-assignable and
move-assignable.
__econtext__ maintains a static, thread-local pointer (smart pointer),
accessed by __ec_current__, pointing to the active context.
On each context switch the static thread-local pointer is updated.
The usage of this global pointer makes the context switch a little bit slower
(due access of thread local storage) but has some advantages. It allows to access
the control structure of the current active context from arbitrary code paths
required in order to support segmented stacks, which need to call certain
maintenance functions (__splitstack_getcontext() etc.) before each context switch
(each context switch exchanges the stack).
Additionally the destruction of __econtext__ and thus the stack deallocation is
faster compared to [link ccontext __ccontext__].
__econtext__ expects a function/functor with signature `void(void* vp)` (
`vp` is the data passed at the first invocation of
[operator_link execution_context operator_call operator()]).
[heading usage of __econtext__]
int n=35;
int p=0;
boost::context::execution_context mctx( boost::context::execution_context::current() );
boost::context::execution_context ctx(
[n,&p,&mctx](void*)mutable{
int a=0;
int b=1;
while(n-->0){
yield(a);
auto next=a+b;
a=b;
b=next;
}
});
for(int i=0;i<10;++i){
ctx();
std::cout<<p<<" ";
}
output:
0 1 1 2 3 5 8 13 21 34
This simple example demonstrates the basic usage of __econtext__.
[heading inverting the control flow]
/*
* grammar:
* P ---> E '\0'
* E ---> T {('+'|'-') T}
* T ---> S {('*'|'/') S}
* S ---> digit | '(' E ')'
*/
class Parser{
// implementation omitted; see examples directory
};
int main() {
std::istringstream is("1+1");
bool done=false;
std::exception_ptr except;
// create handle to main execution context
auto main_ctx( boost::context::execution_context::current() );
// execute parser in new execution context
boost::context::execution_context parser_ctx(
std::allocator_arg,
boost::context::fixedsize_stack(4096),
[&main_ctx,&is,&done,&except](void*){
// create parser with callback function
Parser p( is,
[&main_ctx,&c](char ch){
// resume main execution context
main_ctx( & ch);
});
try {
// start recursive parsing
p.run();
} catch ( ... ) {
// store other exceptions in exception-pointer
except = std::current_exception();
}
// set termination flag
done=true;
// resume main execution context
main_ctx();
});
// user-code pulls parsed data from parser
// invert control flow
void * vp = parser_ctx();
if ( except) {
std::rethrow_exception( except);
}
while( ! done) {
printf("Parsed: %c\n",* static_cast< char* >( vp) );
parser_ctx();
if ( except) {
std::rethrow_exception( except);
}
}
std::cout << "main: done" << std::endl;
}
output:
Parsed: 1
Parsed: +
Parsed: 1
In this example a recursive descent parser uses a callback to emit a newly
passed symbol. Using __econtext__ the control flow can be inverted, e.g. the
user-code pulls parsed symbols from the parser - instead to get pushed from the
parser (via callback).
The data (character) is transferred between the two __econtext__.
If the code executed by __econtext__ emits an exception, the application is
terminated. ['std::exception_ptr] can be used to transfer exceptions between
different execution contexts.
Sometimes it is necessary to unwind the stack of an unfinished context to
destroy local stack variables so they can release allocated resources (RAII
pattern). The user is responsible for this task.
[heading allocating control structures on top of stack]
Allocating control structures on top of the stack requires to allocated the
__stack_context__ and create the control structure with placement new before
__econtext__ is created.
[note The user is responsible for destructing the control structure at the top
of the stack.]
// stack-allocator used for (de-)allocating stack
fixedsize_stack salloc( 4048);
// allocate stack space
stack_context sctx( salloc.allocate() );
// reserve space for control structure on top of the stack
void * sp = static_cast< char * >( sctx.sp) - sizeof( my_control_structure);
std::size_t size = sctx.size - sizeof( my_control_structure);
// placement new creates control structure on reserved space
my_control_structure * cs = new ( sp) my_control_structure( sp, size, sctx, salloc);
...
// destructing the control structure
cs->~my_control_structure();
...
struct my_control_structure {
// execution context
execution_context ectx;
template< typename StackAllocator >
my_control_structure( void * sp, std::size_t size, stack_context sctx, StackAllocator salloc) :
// create execution context
ectx( std::allocator_arg, preallocated( sp, size, sctx), salloc, entry_func) {
}
...
};
[heading exception handling]
If the function executed inside a __econtext__ emits ans exception, the
application is terminated by calling ['std::terminate(). ['std::exception_ptr]
can be used to transfer exceptions between different execution contexts.
[heading parameter passing]
The void pointer argument passed to __ec_op__, in one context, is passed as
the last argument of the __context_fn__ if the context is started for the
first time.
In all following invocations of __ec_op__ the void pointer passed to
__ec_op__, in one context, is returned by __ec_op__ in the other context.
class X {
private:
std::exception_ptr excptr_;
boost::context::execution_context caller_;
boost::context::execution_context callee_;
public:
X() :
excptr_(),
caller_( boost::context::execution_context::current() ),
callee_( [=] (void * vp) {
try {
int i = * static_cast< int * >( vp);
std::string str = boost::lexical_cast<std::string>(i);
caller_( & str);
} catch (...) {
excptr_=std::current_exception();
}
})
{}
std::string operator()( int i) {
void * ret = callee_( & i);
if(excptr_){
std::rethrow_exception(excptr_);
}
return * static_cast< std::string * >( ret);
}
};
X x;
std::cout << x( 7) << std::endl;
output:
7
[heading Class `execution_context`]
class execution_context {
public:
static execution_context current() noexcept;
template< typename Fn, typename ... Args >
execution_context( Fn && fn, Args && ... args);
template< typename StackAlloc, typename Fn, typename ... Args >
execution_context( std::allocator_arg_t, StackAlloc salloc, Fn && fn, Args && ... args);
template< typename StackAlloc, typename Fn, typename ... Args >
execution_context( std::allocator_arg_t, preallocated palloc, StackAlloc salloc, Fn && fn, Args && ... args);
execution_context( execution_context const& other) noexcept;
execution_context( execution_context && other) noexcept;
execution_context & operator=( execution_context const& other) noexcept;
execution_context & operator=( execution_context && other) noexcept;
explicit operator bool() const noexcept;
bool operator!() const noexcept;
void * operator()( void * vp = nullptr);
template< typename Fn, typename ... Args >
void * operator()( exec_ontop_arg_t, Fn && fn, Args && ... args);
template< typename Fn, typename ... Args >
void * operator()( void * vp, exec_ontop_arg_t, Fn && fn, Args && ... args);
bool operator==( execution_context const& other) const noexcept;
bool operator!=( execution_context const& other) const noexcept;
bool operator<( execution_context const& other) const noexcept;
bool operator>( execution_context const& other) const noexcept;
bool operator<=( execution_context const& other) const noexcept;
bool operator>=( execution_context const& other) const noexcept;
template< typename charT, class traitsT >
friend std::basic_ostream< charT, traitsT > &
operator<<( std::basic_ostream< charT, traitsT > & os, execution_context const& other);
};
[static_member_heading execution_context..current]
static execution_context current() noexcept;
[variablelist
[[Returns:] [Returns an instance of excution_context pointing to the active
execution context.]]
[[Throws:] [Nothing.]]
]
[constructor_heading execution_context..constructor]
template< typename Fn, typename ... Args >
execution_context( Fn && fn, Args && ... args);
template< typename StackAlloc, typename Fn, typename ... Args >
execution_context( std::allocator_arg_t, StackAlloc salloc, Fn && fn, Args && ... args);
template< typename StackAlloc, typename Fn, typename ... Args >
execution_context( std::allocator_arg_t, preallocated palloc, StackAlloc salloc, Fn && fn, Args && ... args);
[variablelist
[[Effects:] [Creates a new execution context and prepares the context to execute
`fn`. `fixedsize_stack` is used as default stack allocator
(stack size == fixedsize_stack::traits::default_size()).
The constructor with argument type `preallocated`, is used to store control
structures on top of the stack.]]
]
[copy_constructor_heading execution_context..copy constructor]
execution_context( execution_context const& other) noexcept;
[variablelist
[[Effects:] [Copies `other`, e.g. underlying capture record is shared
with `*this`.]]
[[Throws:] [Nothing.]]
]
[move_constructor_heading execution_context..move constructor]
execution_context( execution_context && other) noexcept;
[variablelist
[[Effects:] [Moves underlying capture record to `*this`.]]
[[Throws:] [Nothing.]]
]
[copy_assignment_heading execution_context..copy assignment]
execution_context & operator=( execution_context const& other) noexcept;
[variablelist
[[Effects:] [Copies the state of `other` to `*this`, state (capture record) is shared.]]
[[Throws:] [Nothing.]]
]
[move_assignment_heading execution_context..move assignment]
execution_context & operator=( execution_context && other) noexcept;
[variablelist
[[Effects:] [Moves the state of `other` to `*this` using move semantics.]]
[[Throws:] [Nothing.]]
]
[operator_heading execution_context..operator_bool..operator bool]
explicit operator bool() const noexcept;
[variablelist
[[Returns:] [`true` if `*this` points to a capture record.]]
[[Throws:] [Nothing.]]
]
[operator_heading execution_context..operator_not..operator!]
bool operator!() const noexcept;
[variablelist
[[Returns:] [`true` if `*this` does not point to a capture record.]]
[[Throws:] [Nothing.]]
]
[operator_heading execution_context..operator_call..operator()]
void * operator()( void * vp = nullptr) noexcept;
[variablelist
[[Effects:] [Stores internally the current context data (stack pointer,
instruction pointer, and CPU registers) of the current active context and
restores the context data from `*this`, which implies jumping to `*this`'s
context.
The void pointer argument, `vp`, is passed to the current context to be returned
by the most recent call to `execution_context::operator()` in the same thread.
`fn` is executed with arguments `args` on top of the stack of `this`.
[[Note:] [The behaviour is undefined if `operator()()` is called while `execution_context::current()`
returns `*this` (e.g. resuming an already running context). If the top-level context
function returns, `std::exit()` is called.]]
[[Returns:] [The void pointer argument passed to the most recent call to
`execution_context::operator()`, if any.]]
]
[operator_heading execution_context..operator_call..operator(exec_ontop_arg_t)]
template< typename Fn, typename ... Args >
void * operator()( exec_ontop_arg_t, Fn && fn, Args && ... args);
template< typename Fn, typename ... Args >
void * operator()( void * data, exec_ontop_arg_t, Fn && fn, Args && ... args);
[variablelist
[[Effects:] [Same as `operator()(void*)`, additionally function `fn` is executed
with arguments `args` in the context of `*this` (e.g. the stack frame of `fn` is
allocated on stack of `*this`.]]
[[Returns:] [The void pointer argument passed to the most recent call to
`execution_context::operator()`, if any.]]
]
[operator_heading execution_context..operator_equal..operator==]
bool operator==( execution_context const& other) const noexcept;
[variablelist
[[Returns:] [`true` if `*this` and `other` represent the same execution context,
`false` otherwise.]]
[[Throws:] [Nothing.]]
]
[operator_heading execution_context..operator_notequal..operator!=]
bool operator!=( execution_context const& other) const noexcept;
[variablelist
[[Returns:] [[`! (other == * this)]]]
[[Throws:] [Nothing.]]
]
[operator_heading execution_context..operator_less..operator<]
bool operator<( execution_context const& other) const noexcept;
[variablelist
[[Returns:] [`true` if `*this != other` is true and the
implementation-defined total order of `execution_context` values places `*this` before
`other`, false otherwise.]]
[[Throws:] [Nothing.]]
]
[operator_heading execution_context..operator_greater..operator>]
bool operator>( execution_context const& other) const noexcept;
[variablelist
[[Returns:] [`other < * this`]]
[[Throws:] [Nothing.]]
]
[operator_heading execution_context..operator_lesseq..operator<=]
bool operator<=( execution_context const& other) const noexcept;
[variablelist
[[Returns:] [`! (other < * this)`]]
[[Throws:] [Nothing.]]
]
[operator_heading execution_context..operator_greatereq..operator>=]
bool operator>=( execution_context const& other) const noexcept;
[variablelist
[[Returns:] [`! (* this < other)`]]
[[Throws:] [Nothing.]]
]
[hding execution_context..Non-member function [`operator<<()]]
template< typename charT, class traitsT >
std::basic_ostream< charT, traitsT > &
operator<<( std::basic_ostream< charT, traitsT > & os, execution_context const& other);
[variablelist
[[Efects:] [Writes the representation of `other` to stream `os`.]]
[[Returns:] [`os`]]
]
[endsect]