[/ Copyright Oliver Kowalke 2014. Distributed under the Boost Software License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt ] [section:econtext Class execution_context] [important __econtext__ requires C++14.] Class __econtext__ encapsulates __fcontext__ and related functions ( __jump_fcontext__ and __make_fcontext__) as well as stack management. __econtext__ permits access to the current, active context via `execution_context::current()`. /* * grammar: * P ---> E '\0' * E ---> T {('+'|'-') T} * T ---> S {('*'|'/') S} * S ---> digit | '(' E ')' */ class Parser{ // implementation omitted; see examples directory }; int main() { std::istringstream is("1+1"); char c; bool done=false; std::exception_ptr except; // create handle to main execution context auto main_ctx( boost::context::execution_context::current() ); // execute parser in new execution context boost::context::execution_context parser_ctx( std::allocator_arg, boost::context::fixedsize_stack(), [&main_ctx,&is,&c,&done,&except](){ // create parser with callback function Parser p( is, [&main_ctx,&c](char ch){ c=ch; // resume main execution context main_ctx(); }); try { // start recursive parsing p.run(); } catch ( ... ) { // store other exceptions in exception-pointer except = std::current_exception(); } // set termination flag done=true; // resume main execution context main_ctx(); }); // user-code pulls parsed data from parser // invert control flow parser_ctx(); if ( except) { std::rethrow_exception( except); } while( ! done) { printf("Parsed: %c\n",c); parser_ctx(); if ( except) { std::rethrow_exception( except); } } std::cout << "main: done" << std::endl; } output: Parsed: 1 Parsed: + Parsed: 1 In this example a recursive descent parser uses a callback to emit a newly passed symbol. Using __econtext__ the control flow can be inverted, e.g. the user-code pulls parsed symbols from the parser - instead to get pushed from the parser (via callback). The interface of __econtext__ does not transfer data. This is not required because usually sharing data's address (pointer/reference of lvalues) is sufficient. If the code executed by __econtext__ emits an exception, the application is terminated. ['std::exception_ptr] can be used to transfer exceptions between different execution contexts. Sometimes it is necessary to unwind the stack of an unfinished context to destroy local stack variables so they can release allocated resources (RAII pattern). The user is responsible for this task. [heading allocating control structures on top of stack] Allocating control structures on top of the stack requires to allocated the __stack_context__ and create the control structure with placement new before __econtext__ is created. [note The user is responsible for destructing the control structure at the top of the stack.] // stack-allocator used for (de-)allocating stack fixedsize_stack salloc( 4048); // allocate stack space stack_context sctx( salloc.allocate() ); // reserve space for control structure on top of the stack void * sp = static_cast< char * >( sctx.sp) - sizeof( my_control_structure); std::size_t size = sctx.size - sizeof( my_control_structure); // placement new creates control structure on reserved space my_control_structure * cs = new ( sp) my_control_structure( sp, size, sctx, salloc); ... // destructing the control structure cs->~my_control_structure(); ... struct my_control_structure { // execution context execution_context ectx; template< typename StackAllocator > my_control_structure( void * sp, std::size_t size, stack_context sctx, StackAllocator salloc) : // create execution context ectx( std::allocator_arg, preallocated( sp, size, sctx), salloc, entry_func) { } ... }; [heading exception handling] If the function executed inside a __econtext__ emits ans exception, the application is terminated by calling ['std::terminate(). ['std::exception_ptr] can be used to transfer exceptions between different execution contexts. [heading parameter passing] Input and output parameters are transferred via a lambda capture list and references/pointers. class X { private: int * inp_; std::string outp_; std::exception_ptr excptr_; boost::context::execution_context caller_; boost::context::execution_context callee_; public: X() : inp_( nullptr), outp_(), excptr_(), caller_( boost::context::execution_context::current() ), callee_( [=] () { try { int i = * inp_; outp_ = boost::lexical_cast< std::string >( i); caller_(); } catch (...) { excptr_=std::current_exception(); } }) {} std::string operator()( int i) { inp_ = & i; callee_(); if(excptr_){ std::rethrow_exception(excptr_); } return outp_; } }; int main() { X x; std::cout << x( 7) << std::endl; std::cout << "done" << std::endl; } [heading Class `execution_context`] class execution_context { public: static execution_context current() noexcept; template< typename Fn, typename ... Args > execution_context( Fn && fn, Args && ... args); template< typename StackAlloc, typename Fn, typename ... Args > execution_context( std::allocator_arg_t, StackAlloc salloc, Fn && fn, Args && ... args); template< typename StackAlloc, typename Fn, typename ... Args > execution_context( std::allocator_arg_t, preallocated palloc, StackAlloc salloc, Fn && fn, Args && ... args); execution_context( execution_context const& other) noexcept; execution_context( execution_context && other) noexcept; execution_context & operator=( execution_context const& other) noexcept; execution_context & operator=( execution_context && other) noexcept; explicit operator bool() const noexcept; bool operator!() const noexcept; void operator()() noexcept; }; [heading `static execution_context current()`] [variablelist [[Returns:] [Returns an instance of excution_context pointing to the active execution context.]] [[Throws:] [Nothing.]] ] [heading `template< typname Fn, typename ... Args > execution_context( Fn && fn, Args && ... args)`] [variablelist [[Effects:] [Creates a new execution context and prepares the context to execute `fn`. `fixedsize_stack` is used as default stack allocator (stack size == fixedsize_stack::traits::default_size().]] ] [heading `template< typename StackAlloc, typname Fn, typename ... Args > execution_context( std::allocator_arg_t, StackAlloc salloc, Fn && fn, Args && ... args)`] [variablelist [[Effects:] [Creates a new execution context and prepares the context to execute `fn`.]] ] [heading `template< typename StackAlloc, typname Fn, typename ... Args > execution_context( std::allocator_arg_t, preallocated palloc, StackAlloc salloc, Fn && fn, Args && ... args)`] [variablelist [[Effects:] [Creates a new execution context and prepares the context to execute `fn`. Used to store control structures on top of the stack.]] ] [heading `execution_context( execution_context const& other)`] [variablelist [[Effects:] [Copies `other`, e.g. underlying capture record is shared with `*this`.]] [[Throws:] [Nothing.]] ] [heading `execution_context( execution_context && other)`] [variablelist [[Effects:] [Moves underlying capture record to `*this`.]] [[Throws:] [Nothing.]] ] [heading `execution_context & operator=( execution_context const& other)`] [variablelist [[Effects:] [Copies the state of `other` to `*this`, state (capture record) is shared.]] [[Throws:] [Nothing.]] ] [heading `execution_context & operator=( execution_context && other)`] [variablelist [[Effects:] [Moves the state of `other` to `*this` using move semantics.]] [[Throws:] [Nothing.]] ] [heading `explicit operator bool() const noexcept`] [variablelist [[Returns:] [`true` if `*this` points to a capture record.]] [[Throws:] [Nothing.]] ] [heading `bool operator!() const noexcept`] [variablelist [[Returns:] [`true` if `*this` does not point to a capture record.]] [[Throws:] [Nothing.]] ] [heading `void operator()() noexcept`] [variablelist [[Effects:] [Stores internally the current context data (stack pointer, instruction pointer, and CPU registers) to the current active context and restores the context data from `*this`, which implies jumping to `*this`'s execution context.]] [[Note:] [The behaviour is undefined if `operator()()` is called while `execution_context::current()` returns `*this` (e.g. resuming an already running context). If the top-level context function returns, `std::exit()` is called.]] [[Returns:] [Reference to `*this`.]] [[Throws:] [Nothing.]] ] [heading Struct `preallocated`] struct preallocated { void * sp; std::size_t size; stack_context sctx; preallocated( void * sp, std:size_t size, stack_allocator sctx) noexcept; }; [heading `preallocated( void * sp, std:size_t size, stack_allocator sctx)`] [variablelist [[Effects:] [Creates an object of preallocated.]] ] [section:winfibers Using WinFiber-API] Because the TIB (thread information block) is not fully described in the MSDN, it might be possible that not all required TIB-parts are swapped. With compiler flag `BOOST_USE_WINFIBERS` `execution_context` uses internally the Windows Fiber API. [note The first call of `execution_context::operator()` converts the thread into a Windows fiber by invoking `ConvertThreadToFiber()`. If desired, `ConvertFiberToThread()` has to be called by the user explicitly in order to release resources allocated by `ConvertThreadToFiber()` (e.g. after using boost.context).] [endsect] [endsect]