# boost.cobalt This library provides a set of easy to use coroutine primitives & utilities running on top of boost.asio. These will be of interest for applications that perform a lot of IO that want to not block unnecessarily, yet still want to have linear & readable code (i.e. avoid callbacks). A minimum of Boost 1.82 is necessary as the ASIO in that version has needed support. C++ 20 is needed for C++ coroutines. Below is a showcase of features, if you're new to coroutines or asynchronous programming, please see the [primer](https://www.boost.org/doc/libs/master/libs/cobalt/doc/html/index.html#coroutine_primer). The assumptions are: - `io_context` is the execution_context of choice. - If `asio::io_context` is the executor, no more than one kernel thread executes within it at a time. - Eager execution is the way to go. - A thread created with promise is only using promise stuff. ## Entry points ```cpp // a single threaded main running on an io_context cobalt::main co_main(int argc, char ** argv) { // wrapper around asio::steady_timer asio::steady_timer tim{co_await cobalt::this_coro::executor}; tim.expires_after(std::chrono::milliseconds(100)); co_await tim.async_wait(cobalt::use_op); co_return 0; } ``` That is, [`main`](doc/reference/main.adoc) runs on a single threaded `io_context`. It also hooks up signals, so that things like `Ctrl+C` get forwarded as cancellations automatically Alternatively, [`run`](doc/reference/run.adoc) can be used manually. ```cpp cobalt::task main_func() { asio::steady_timer tim{co_await cobalt::this_coro::executor}; tim.expires_after(std::chrono::milliseconds(100)); co_await tim.async_wait(cobalt::use_op); co_return 0; } int main(int argc, char ** argv) { return run(main_func()); } ``` ## Promises The core primitive for creating your own functions is [`cobalt::promise`](doc/reference/promise.adoc). It is eager, i.e. it starts execution immediately, before you `co_await`. ```cpp cobalt::promise test() { printf("test-1\n"); asio::steady_timer tim{co_await cobalt::this_coro::executor}; tim.expires_after(std::chrono::milliseconds(100)); co_await tim.async_wait(cobalt::use_op); printf("test-2\n"); } cobalt::main co_main(int argc, char ** argv) { printf("main-1\n"); auto tt = test(); printf("main-2\n"); co_await tt; printf("main-3\n"); return 0; } ``` The output of the above will be: ```cpp main-1 test-1 main-2 test-2 main-3 ``` Unlike ops, returned by .wait, the promise can be disregarded; disregarding the promise does not cancel it, but rather detaches is. This makes it easy to spin up multiple tasks to run in parallel. In order to avoid accidental detaching the promise type uses `nodiscard` unless one uses `+` to detach it: ```cpp cobalt::promise my_task(); cobalt::main co_main() { // warns & cancels the task my_task(); // ok +my_task(); co_return 0; } ``` ## Task A [`task`](doc/reference/task.adoc) is a lazy alternative to a promise, that can be spawned onto or `co_await`ed on another executor. An `cobalt::task` can also be used with `spawn` to turn it into an asio operation. ## Generator A [`generator`](doc/reference/generator.adoc) is a coroutine that produces a series of values instead of one, but otherwise similar to `promise`. ```cpp cobalt::generator test() { printf("test-1\n"); co_yield 1; printf("test-2\n"); co_yield 2; printf("test-3\n"); co_return 3; } cobalt::main co_main(int argc, char ** argv) { printf("main-1\n"); auto tt = test(); printf("main-2\n"); i = co_await tt; // 1 printf("main-3: %d\n", i); i = co_await tt; // 2 printf("main-4: %d\n", i); i = co_await tt; // 3 printf("main-5: %d\n", i); co_return 0; } ``` ``` main-1 test-1 main-2 main-3: 1 test-2 main-4: 2 test-3 main-5: 3 ``` ## Channels Channels are modeled on golang; they are different from boost.asio channels in that they don't go through the executor. Instead they directly context switch when possible. ```cpp cobalt::promise test(cobalt::channel & chan) { printf("Reader 1: %d\n", co_await chan.read()); printf("Reader 2: %d\n", co_await chan.read()); printf("Reader 3: %d\n", co_await chan.read()); } cobalt::main co_main(int argc, char ** argv) { cobalt::channel chan{0u /* buffer size */}; auto p = test(chan); printf("Writer 1\n"); co_await chan.write(10); printf("Writer 2\n"); co_await chan.write(11); printf("Writer 3\n"); co_await chan.write(12); printf("Writer 4\n"); co_await p; co_return 0u; } ``` ```` Writer-1 Reader-1: 10 Writer-2 Reader-1: 11 Writer-3 Reader-1: 12 Writer-4 ```` ## Ops To make writing asio operations that have an early completion easier, cobalt has an op-helper: ```cpp template struct wait_op : cobalt::op // enable_op is to use ADL { Timer & tim; wait_op(Timer & tim) : tim(tim) {} // this gets used to determine if it needs to suspend for the op void ready(cobalt::handler h) { if (tim.expiry() < Timer::clock_type::now()) h(system::error_code(asio::error::operation_aborted)); } // this gets used to initiate the op if ti needs to suspend void initiate(cobalt::completion_handler complete) { tim.async_wait(std::move(complete)); } }; cobalt::main co_main(int argc, char ** argv) { cobalt::steady_timer tim{co_await cobalt::this_coro::executor}; // already expired co_await wait_op(tim); // will not suspend, since its ready } ``` ## race [`race`](doc/reference/race.adoc) let's you await multiple awaitables at once. ```cpp cobalt::promise delay(int ms) { asio::steady_timer tim{co_await cobalt::this_coro::executor}; tim.expires_after(std::chrono::milliseconds(ms)); co_await tim.async_wait(cobalt::use_op); } cobalt::main co_main(int argc, char ** argv) { auto res = co_await race(delay(100), delay(50)); assert(res == 1); // delay(50) completes earlier, delay(100) is not cancelled co_return 0u; } ```