Templated Circular Buffer Containercircular_buffer<T, Alloc> |
![]() |
Synopsis
Rationale
Simple Example
Definition
Template Parameters
Members
Friend Functions
Model of
Type Requirements
Semantics
Caveats
Debug Support
Example
Notes
See also
Acknowledgments
![]() |
||
|
The circular_buffer container provides fixed capacity storage with
constant time insertion and removal of elements at each end of a circular
buffer. When the capacity of the circular_buffer is exhausted,
inserted elements will cause elements at the opposite end to be overwritten.
(See the Figure.) The circular_buffer only allocates memory when
created, when the capacity is adjusted explicitly, or as necessary to
accommodate a resizing or assign operation. (There is also a circular_buffer_space_optimized
available. It is an adaptor of the circular_buffer
which does not allocate memory at once when created rather it allocates memory as needed.)
A contiguous region of memory utilized as a circular buffer has several unique and useful characteristics:
The circular_buffer container provides a similar interface to std::vector,
std::deque and std::list including push,
pop, insert, erase, iterators and
compatibility with std algorithms.
Possible applications of the circular_buffer include:
The design of the circular_buffer container is guided by the
following principles:
std
containers and algorithms.
circular_buffer_space_optimized
is such an example of the adaptor.)
A brief example using the circular_buffer:
#include <boost/circular_buffer.hpp>
int main(int argc, char* argv[]) {
// Create a circular buffer with capacity for 3 integers.
boost::circular_buffer<int> cb(3);
cb.push_back(1); // Insert the first element.
cb.push_back(2); // Insert the second element.
cb.push_back(3); // Insert the third element.
// The buffer is full now, pushing subsequent
// elements will overwrite the front-most elements.
cb.push_back(4); // Overwrite 1 with 4.
cb.push_back(5); // Overwrite 2 with 5.
// The buffer now contains 3, 4 and 5.
int a = cb[0]; // a == 3
int b = cb[1]; // b == 4
int c = cb[2]; // c == 5
// Elements can be popped from either the front or back.
cb.pop_back(); // 5 is removed.
cb.pop_front(); // 3 is removed.
int d = cb[0]; // d == 4
return 0;
}
#include <boost/circular_buffer.hpp>
In fact the circular_buffer is defined in the file
boost/circular_buffer/base.hpp, but it is necessary to
include the boost/circular_buffer.hpp
in order to use this container. Also, there is a forward declaration for circular_buffer
in the header boost/circular_buffer_fwd.hpp.
| Parameter | Description | Default |
|---|---|---|
T |
The type of the elements stored in the circular buffer. | |
Alloc |
The allocator type used for all internal memory management. | std::allocator |
Refer the source code documentation for a detailed description.
| Type | Description |
|---|---|
value_type
|
The type of the elements stored in the circular buffer. |
allocator_type |
The type of the allocator used in the circular buffer. |
iterator
|
Iterator (random access) used to iterate through a circular buffer. |
pointer
|
Pointer to the element. |
reference
|
Reference to the element. |
reverse_iterator
|
Iterator used to iterate backwards through a circular buffer. |
const_iterator
|
Const (random access) iterator used to iterate through a circular buffer. |
const_pointer
|
Const pointer to the element. |
const_reference
|
Const reference to the element. |
const_reverse_iterator
|
Const iterator used to iterate backwards through a circular buffer. |
difference_type
|
Distance type. A signed integral type used to represent the distance between two iterators. |
size_type
|
Size type. An unsigned integral type that can represent any nonnegative value of the container's distance type. |
| Method | Description |
|---|---|
circular_buffer(size_type
capacity, const allocator_type& alloc = allocator_type())
|
Create an empty circular buffer with a given capacity. |
circular_buffer(size_type
capacity, const T& item, const allocator_type& alloc =
allocator_type())
|
Create a full circular buffer with a given capacity and filled with copies of
item.
|
circular_buffer(const
circular_buffer& cb)
|
Copy constructor. |
template<InputIterator>
circular_buffer(size_type capacity, InputIterator first, InputIterator
last, const allocator_type& alloc = allocator_type())
|
Create a circular buffer with a copy of a range. |
~circular_buffer()
|
Destructor. |
template<InputIterator>
assign(InputIterator first, InputIterator last)
|
Assign a copy of range. |
assign(size_type
n, const T& item)
|
Assign n items into the circular buffer.
|
push_back()
|
Insert a new element with the default value at the end. |
push_back(const
T& item)
|
Insert a new element at the end. |
push_front()
|
Inserts a new element with the default value at the start. |
push_front(const
T& item)
|
Insert a new element at the start. |
pop_back()
|
Remove the last (rightmost) element. |
pop_front()
|
Remove the first (left-most) element. |
front()*
|
Return the first (leftmost) element. |
back()*
|
Return the last (rightmost) element. |
at(size_type
index)*
|
Return the element at the index position.
|
operator[](size_type
index)*
|
Return the element at the index position.
|
data()
|
Return pointer to data stored in the circular buffer as a continuous array of values. |
insert(iterator
pos)
|
Insert a new element with the default value before the given position. |
insert(iterator
pos, const T& item)
|
Insert the item before the given position.
|
insert(iterator
pos, size_type n, const T& item)
|
Insert n copies of the item before the given
position.
|
template<InputIterator>
insert(iterator pos, InputIterator first, InputIterator last)
|
Insert the range [first, last) before the given position.
|
rinsert(iterator
pos)
|
Insert a new element with the default value before the given position. |
rinsert(iterator
pos, const T& item)
|
Insert the item before the given position.
|
rinsert(iterator
pos, size_type n, const T& item)
|
Insert n copies of the item before the given
position.
|
template<InputIterator>
rinsert(iterator pos, InputIterator first, InputIterator last)
|
Insert the range [first, last) before the given position.
|
erase(iterator
pos)
|
Erase the element at the given position. |
erase(iterator
first, iterator last)
|
Erase the range [first, last).
|
clear()
|
Erase all the stored elements. |
empty() const
|
Is the circular buffer empty? |
full() const
|
Is the circular buffer full? |
size() const
|
Return the number of elements currently stored in the circular buffer. |
resize(size_type
new_size, param_value_type item = T(), bool remove_front = true)
|
Change the size of the circular buffer. |
max_size() const
|
Return the largest possible size (or capacity) of the circular buffer. |
capacity() const
|
Return the capacity of the circular buffer. |
set_capacity(size_type
new_capacity, bool remove_front = true)
|
Change the capacity of the circular buffer. |
begin()*
|
Return an iterator pointing to the beginning of the circular buffer. |
end()*
|
Return an iterator pointing to the end of the circular buffer. |
rbegin()*
|
Return a reverse iterator pointing to the beginning of the reversed circular buffer. |
rend()*
|
Return a reverse iterator pointing to the end of the reversed circular buffer. |
get_allocator()*
|
Return the allocator. |
operator=(const
circular_buffer& cb)
|
Assignment operator. |
swap(circular_buffer&
cb)
|
Swap the contents of two circular buffers. |
const counterpart.
| Method | Description |
|---|---|
operator<(const circular_buffer& lhs, const circular_buffer& rhs) |
Lexicographical comparison. |
operator==(const circular_buffer& lhs, const circular_buffer& rhs)
|
Test two circular buffers for equality. |
Random Access Container, Front Insertion Sequence, Back Insertion Sequence, Assignable (SGI), Equality Comparable, LessThan Comparable (SGI)
T is CopyConstructible.
The behaviour of insertion for circular_buffer is as follows:
circular_buffer remains fixed unless adjusted
via set_capacity or resize.
insert
will overwrite front elements as necessary.
rinsert will overwrite back elements as necessary.
The behaviour of resizing a circular_buffer is as follows:
resize. (The
capacity can be only increased, not decreased.)
The behaviour of assigning to a circular_buffer is as follows:
assign. (The
capacity can be only increased, not decreased.)
The rules for iterator (and result of data())
invalidation for circular_buffer are as follows:
insert at the end of the circular_buffer (including
push_back) does not invalidate any iterator except the case the
iterator points to the overwritten element.
rinsert at the beginning of the circular_buffer (including
push_front) does not invalidate any iterator except the case
the iterator points to the overwritten element.
insert in the middle of the circular_buffer
invalidates iterators pointing to the elements at the insertion point and
behind the insertion point. It also invalidates iterators pointing to the
overwritten element(s).
rinsert in the middle of the circular_buffer
invalidates iterators pointing to the elements before the insertion point and
iterators pointing to the overwritten element(s).
erase at the end of the circular_buffer (including pop_back)
invalidates only iterators pointing to the erased element(s).
pop_front
invalidates only iterators pointing to the erased element.
erase at the beginning or in the middle of the circular_buffer
invalidates iterators pointing to the erased element(s) and iterators pointing
to the elements behind the erase point.
data, set_capacity, resize, operator=,
assign, swap and clear invalidate all
iterators pointing to the circular_buffer.
In addition to the preceding rules the iterators get also invalidated due to
overwritting (e.g. iterator pointing to the front-most element gets invalidated
when inserting into the full circular_buffer). They get
invalidated in that sense they do not point to the same element as before but
they do still point to the same valid place in the memory. If you want
to rely on this feature you have to turn of the Debug Support
otherwise an assertion will report an error if such invalidated iterator is used.
The circular_buffer should not be used for storing pointers to
dynamically allocated objects. When a circular_buffer becomes
full, further insertion will overwrite the stored pointers - resulting in a memory
leak. One recommend alternative is the use of smart pointers [1].
(Any container of std::auto_ptr is considered particularly
hazardous. [2])
Elements inserted near the front of a full circular_buffer can be
lost. According to the semantics of insert,
insertion overwrites front-most items as necessary - possibly including
elements currently being inserted at the front of the buffer.
Conversely, push_front to a full circular_buffer is
guaranteed to overwrite the back-most element.
Elements inserted near the back of a full circular_buffer can be
lost. According to the semantics of rinsert,
insertion overwrites front-most items as necessary - possibly including
elements currently being inserted at the back of the buffer. Conversely,
push_back to a full circular_buffer is guaranteed to
overwrite the front-most element.
While internals of a circular_buffer are circular, iterators are not.
Iterators of a circular_buffer are only valid for the range [begin(),
end()]. E.g. iterators (begin() - 1) and (end() + 1)
are invalid.
In order to help a programmer to avoid and find common bugs, the circular_buffer
contains a kind of debug support.
The circular_buffer maintains a list of valid iterators. As soon
as any element gets destroyed all iterators pointing to this element are
removed from this list and explicitly invalidated (an invalidation flag is
set). The debug support also consists of many assertions (BOOST_ASSERT
macros) which ensure the circular_buffer and its iterators are
used in the correct manner at runtime. In case an invalid iterator is used the
assertion will report an error. The connection of explicit iterator
invalidation and assertions makes a very robust debug technique which catches
most of the errors.
Moreover, the uninitialized memory allocated by circular_buffer is
filled with the value 0xcc in the debug mode. This can help the
programmer when debugging the code to recognize the initialized memory from the
uninitialized. For details refer the
source code.
The debug support is enabled only in the debug mode (when the NDEBUG
is not defined). It can also be explicitly disabled by defining BOOST_DISABLE_CB_DEBUG
macro.
The following example includes various usage of the circular_buffer.
#include <boost/circular_buffer.hpp>
#include <numeric>
#include <assert.h>
int main(int argc, char* argv[])
{
// create a circular buffer of capacity 3
boost::circular_buffer<int> cb(3);
// insert some elements into the circular buffer
cb.push_back(1);
cb.push_back(2);
// assertions
assert(cb[0] == 1);
assert(cb[1] == 2);
assert(!cb.full());
assert(cb.size() == 2);
assert(cb.capacity() == 3);
// insert some other elements
cb.push_back(3);
cb.push_back(4);
int sum = std::accumulate(cb.begin(), cb.end(), 0); // evaluate sum
// assertions
assert(cb[0] == 2);
assert(cb[1] == 3);
assert(cb[2] == 4);
assert(sum == 9);
assert(cb.full());
assert(cb.size() == 3);
assert(cb.capacity() == 3);
return 0;
}
The circular_buffer has a capacity of three int.
Therefore, the size of the buffer will not exceed three. The
accumulate algorithm evaluates the sum of the stored
elements. The semantics the circular_buffer can be inferred from
the assertions.
[1] A good implementation of smart pointers is included in Boost.
[2] Never create a circular buffer of std::auto_ptr.
Refer to Scott Meyers' excellent book Effective
STL for a detailed discussion. (Meyers S., Effective STL: 50 Specific
Ways to Improve Your Use of the Standard Template Library.
Addison-Wesley, 2001.)
boost::circular_buffer_space_optimized,
std::vector,
std::list, std::deque
I would like to thank the Boost community for help when developing the circular_buffer.
The circular_buffer has a short history. Its first version was a std::deque
adaptor. This container was not very effective because of many reallocations
when inserting/removing an element. Thomas Wenish did a review of this version
and motivated me to create a circular buffer which allocates memory at once
when created.
The second version adapted std::vector but it has been abandoned
soon because of limited control over iterator invalidation.
The current version is a full-fledged STL compliant container. Pavel Vozenilek did a thorough review of this version and came with many good ideas and improvements. Also, I would like to thank Howard Hinnant and Nigel Stewart for valuable comments and ideas. And once again I want to thank Nigel Stewart for this document revision.