Files
charconv/src/to_chars.cpp
2023-05-18 11:20:49 +02:00

584 lines
24 KiB
C++

// Copyright 2020-2023 Junekey Jeon
// Copyright 2022 Peter Dimov
// Copyright 2023 Matt Borland
// Distributed under the Boost Software License, Version 1.0.
// https://www.boost.org/LICENSE_1_0.txt
#include <boost/charconv/to_chars.hpp>
#include <cstring>
#include <cstdio>
#include <cstdint>
namespace boost { namespace charconv { namespace detail { namespace to_chars_detail {
#ifdef BOOST_MSVC
# pragma warning(push)
# pragma warning(disable: 4127) // Conditional expression is constant (e.g. BOOST_IF_CONSTEXPR statements)
#endif
// These "//"'s are to prevent clang-format to ruin this nice alignment.
// Thanks to reddit user u/mcmcc:
// https://www.reddit.com/r/cpp/comments/so3wx9/dragonbox_110_is_released_a_fast_floattostring/hw8z26r/?context=3
static constexpr char radix_100_table[] = {
'0', '0', '0', '1', '0', '2', '0', '3', '0', '4', //
'0', '5', '0', '6', '0', '7', '0', '8', '0', '9', //
'1', '0', '1', '1', '1', '2', '1', '3', '1', '4', //
'1', '5', '1', '6', '1', '7', '1', '8', '1', '9', //
'2', '0', '2', '1', '2', '2', '2', '3', '2', '4', //
'2', '5', '2', '6', '2', '7', '2', '8', '2', '9', //
'3', '0', '3', '1', '3', '2', '3', '3', '3', '4', //
'3', '5', '3', '6', '3', '7', '3', '8', '3', '9', //
'4', '0', '4', '1', '4', '2', '4', '3', '4', '4', //
'4', '5', '4', '6', '4', '7', '4', '8', '4', '9', //
'5', '0', '5', '1', '5', '2', '5', '3', '5', '4', //
'5', '5', '5', '6', '5', '7', '5', '8', '5', '9', //
'6', '0', '6', '1', '6', '2', '6', '3', '6', '4', //
'6', '5', '6', '6', '6', '7', '6', '8', '6', '9', //
'7', '0', '7', '1', '7', '2', '7', '3', '7', '4', //
'7', '5', '7', '6', '7', '7', '7', '8', '7', '9', //
'8', '0', '8', '1', '8', '2', '8', '3', '8', '4', //
'8', '5', '8', '6', '8', '7', '8', '8', '8', '9', //
'9', '0', '9', '1', '9', '2', '9', '3', '9', '4', //
'9', '5', '9', '6', '9', '7', '9', '8', '9', '9' //
};
static constexpr char radix_100_head_table[] = {
'0', '.', '1', '.', '2', '.', '3', '.', '4', '.', //
'5', '.', '6', '.', '7', '.', '8', '.', '9', '.', //
'1', '.', '1', '.', '1', '.', '1', '.', '1', '.', //
'1', '.', '1', '.', '1', '.', '1', '.', '1', '.', //
'2', '.', '2', '.', '2', '.', '2', '.', '2', '.', //
'2', '.', '2', '.', '2', '.', '2', '.', '2', '.', //
'3', '.', '3', '.', '3', '.', '3', '.', '3', '.', //
'3', '.', '3', '.', '3', '.', '3', '.', '3', '.', //
'4', '.', '4', '.', '4', '.', '4', '.', '4', '.', //
'4', '.', '4', '.', '4', '.', '4', '.', '4', '.', //
'5', '.', '5', '.', '5', '.', '5', '.', '5', '.', //
'5', '.', '5', '.', '5', '.', '5', '.', '5', '.', //
'6', '.', '6', '.', '6', '.', '6', '.', '6', '.', //
'6', '.', '6', '.', '6', '.', '6', '.', '6', '.', //
'7', '.', '7', '.', '7', '.', '7', '.', '7', '.', //
'7', '.', '7', '.', '7', '.', '7', '.', '7', '.', //
'8', '.', '8', '.', '8', '.', '8', '.', '8', '.', //
'8', '.', '8', '.', '8', '.', '8', '.', '8', '.', //
'9', '.', '9', '.', '9', '.', '9', '.', '9', '.', //
'9', '.', '9', '.', '9', '.', '9', '.', '9', '.' //
};
static void print_1_digit(std::uint32_t n, char* buffer) noexcept
{
BOOST_IF_CONSTEXPR (('0' & 0xf) == 0)
{
*buffer = char('0' | n);
}
else
{
*buffer = char('0' + n);
}
}
static void print_2_digits(std::uint32_t n, char* buffer) noexcept
{
std::memcpy(buffer, radix_100_table + n * 2, 2);
}
// These digit generation routines are inspired by James Anhalt's itoa algorithm:
// https://github.com/jeaiii/itoa
// The main idea is for given n, find y such that floor(10^k * y / 2^32) = n holds,
// where k is an appropriate integer depending on the length of n.
// For example, if n = 1234567, we set k = 6. In this case, we have
// floor(y / 2^32) = 1,
// floor(10^2 * ((10^0 * y) mod 2^32) / 2^32) = 23,
// floor(10^2 * ((10^2 * y) mod 2^32) / 2^32) = 45, and
// floor(10^2 * ((10^4 * y) mod 2^32) / 2^32) = 67.
// See https://jk-jeon.github.io/posts/2022/02/jeaiii-algorithm/ for more explanation.
BOOST_FORCEINLINE static void print_9_digits(std::uint32_t s32, int& exponent,
char*& buffer) noexcept
{
// -- IEEE-754 binary32
// Since we do not cut trailing zeros in advance, s32 must be of 6~9 digits
// unless the original input was subnormal.
// In particular, when it is of 9 digits it shouldn't have any trailing zeros.
// -- IEEE-754 binary64
// In this case, s32 must be of 7~9 digits unless the input is subnormal,
// and it shouldn't have any trailing zeros if it is of 9 digits.
if (s32 >= 100000000)
{
// 9 digits.
// 1441151882 = ceil(2^57 / 1'0000'0000) + 1
auto prod = s32 * std::uint64_t(1441151882);
prod >>= 25;
std::memcpy(buffer, radix_100_head_table + std::uint32_t(prod >> 32) * 2, 2);
prod = std::uint32_t(prod) * std::uint64_t(100);
print_2_digits(std::uint32_t(prod >> 32), buffer + 2);
prod = std::uint32_t(prod) * std::uint64_t(100);
print_2_digits(std::uint32_t(prod >> 32), buffer + 4);
prod = std::uint32_t(prod) * std::uint64_t(100);
print_2_digits(std::uint32_t(prod >> 32), buffer + 6);
prod = std::uint32_t(prod) * std::uint64_t(100);
print_2_digits(std::uint32_t(prod >> 32), buffer + 8);
exponent += 8;
buffer += 10;
}
else if (s32 >= 1000000)
{
// 7 or 8 digits.
// 281474978 = ceil(2^48 / 100'0000) + 1
auto prod = s32 * std::uint64_t(281474978);
prod >>= 16;
const auto head_digits = std::uint32_t(prod >> 32);
// If s32 is of 8 digits, increase the exponent by 7.
// Otherwise, increase it by 6.
exponent += (6 + unsigned(head_digits >= 10));
// Write the first digit and the decimal point.
std::memcpy(buffer, radix_100_head_table + head_digits * 2, 2);
// This third character may be overwritten later but we don't care.
buffer[2] = radix_100_table[head_digits * 2 + 1];
// Remaining 6 digits are all zero?
if (std::uint32_t(prod) <= std::uint32_t((std::uint64_t(1) << 32) / 1000000))
{
// The number of characters actually need to be written is:
// 1, if only the first digit is nonzero, which means that either s32 is of 7
// digits or it is of 8 digits but the second digit is zero, or
// 3, otherwise.
// Note that buffer[2] is never '0' if s32 is of 7 digits, because the input is
// never zero.
buffer += (1 + (unsigned(head_digits >= 10) & unsigned(buffer[2] > '0')) * 2);
}
else
{
// At least one of the remaining 6 digits are nonzero.
// After this adjustment, now the first destination becomes buffer + 2.
buffer += unsigned(head_digits >= 10);
// Obtain the next two digits.
prod = std::uint32_t(prod) * std::uint64_t(100);
print_2_digits(std::uint32_t(prod >> 32), buffer + 2);
// Remaining 4 digits are all zero?
if (std::uint32_t(prod) <= std::uint32_t((std::uint64_t(1) << 32) / 10000))
{
buffer += (3 + unsigned(buffer[3] > '0'));
}
else
{
// At least one of the remaining 4 digits are nonzero.
// Obtain the next two digits.
prod = std::uint32_t(prod) * std::uint64_t(100);
print_2_digits(std::uint32_t(prod >> 32), buffer + 4);
// Remaining 2 digits are all zero?
if (std::uint32_t(prod) <= std::uint32_t((std::uint64_t(1) << 32) / 100))
{
buffer += (5 + unsigned(buffer[5] > '0'));
}
else
{
// Obtain the last two digits.
prod = std::uint32_t(prod) * std::uint64_t(100);
print_2_digits(std::uint32_t(prod >> 32), buffer + 6);
buffer += (7 + unsigned(buffer[7] > '0'));
}
}
}
}
else if (s32 >= 10000)
{
// 5 or 6 digits.
// 429497 = ceil(2^32 / 1'0000)
auto prod = s32 * std::uint64_t(429497);
const auto head_digits = std::uint32_t(prod >> 32);
// If s32 is of 6 digits, increase the exponent by 5.
// Otherwise, increase it by 4.
exponent += (4 + unsigned(head_digits >= 10));
// Write the first digit and the decimal point.
std::memcpy(buffer, radix_100_head_table + head_digits * 2, 2);
// This third character may be overwritten later but we don't care.
buffer[2] = radix_100_table[head_digits * 2 + 1];
// Remaining 4 digits are all zero?
if (std::uint32_t(prod) <= std::uint32_t((std::uint64_t(1) << 32) / 10000))
{
// The number of characters actually written is 1 or 3, similarly to the case of
// 7 or 8 digits.
buffer += (1 + (unsigned(head_digits >= 10) & unsigned(buffer[2] > '0')) * 2);
}
else
{
// At least one of the remaining 4 digits are nonzero.
// After this adjustment, now the first destination becomes buffer + 2.
buffer += unsigned(head_digits >= 10);
// Obtain the next two digits.
prod = std::uint32_t(prod) * std::uint64_t(100);
print_2_digits(std::uint32_t(prod >> 32), buffer + 2);
// Remaining 2 digits are all zero?
if (std::uint32_t(prod) <= std::uint32_t((std::uint64_t(1) << 32) / 100))
{
buffer += (3 + unsigned(buffer[3] > '0'));
}
else
{
// Obtain the last two digits.
prod = std::uint32_t(prod) * std::uint64_t(100);
print_2_digits(std::uint32_t(prod >> 32), buffer + 4);
buffer += (5 + unsigned(buffer[5] > '0'));
}
}
}
else if (s32 >= 100)
{
// 3 or 4 digits.
// 42949673 = ceil(2^32 / 100)
auto prod = s32 * std::uint64_t(42949673);
const auto head_digits = std::uint32_t(prod >> 32);
// If s32 is of 4 digits, increase the exponent by 3.
// Otherwise, increase it by 2.
exponent += (2 + int(head_digits >= 10));
// Write the first digit and the decimal point.
std::memcpy(buffer, radix_100_head_table + head_digits * 2, 2);
// This third character may be overwritten later but we don't care.
buffer[2] = radix_100_table[head_digits * 2 + 1];
// Remaining 2 digits are all zero?
if (std::uint32_t(prod) <= std::uint32_t((std::uint64_t(1) << 32) / 100))
{
// The number of characters actually written is 1 or 3, similarly to the case of
// 7 or 8 digits.
buffer += (1 + (unsigned(head_digits >= 10) & unsigned(buffer[2] > '0')) * 2);
}
else
{
// At least one of the remaining 2 digits are nonzero.
// After this adjustment, now the first destination becomes buffer + 2.
buffer += unsigned(head_digits >= 10);
// Obtain the last two digits.
prod = std::uint32_t(prod) * std::uint64_t(100);
print_2_digits(std::uint32_t(prod >> 32), buffer + 2);
buffer += (3 + unsigned(buffer[3] > '0'));
}
}
else
{
// 1 or 2 digits.
// If s32 is of 2 digits, increase the exponent by 1.
exponent += int(s32 >= 10);
// Write the first digit and the decimal point.
std::memcpy(buffer, radix_100_head_table + s32 * 2, 2);
// This third character may be overwritten later but we don't care.
buffer[2] = radix_100_table[s32 * 2 + 1];
// The number of characters actually written is 1 or 3, similarly to the case of
// 7 or 8 digits.
buffer += (1 + (unsigned(s32 >= 10) & unsigned(buffer[2] > '0')) * 2);
}
}
template <>
char* to_chars<float, dragonbox_float_traits<float>>(std::uint32_t s32, int exponent, char* buffer, chars_format fmt) noexcept
{
// Print significand.
print_9_digits(s32, exponent, buffer);
// Print exponent and return
if (exponent < 0)
{
std::memcpy(buffer, "e-", 2);
buffer += 2;
exponent = -exponent;
}
else if (exponent == 0)
{
if (fmt == chars_format::scientific)
{
std::memcpy(buffer, "e+00", 4);
buffer += 4;
}
return buffer;
}
else
{
std::memcpy(buffer, "e+", 2);
buffer += 2;
}
print_2_digits(std::uint32_t(exponent), buffer);
buffer += 2;
return buffer;
}
template <>
char* to_chars<double, dragonbox_float_traits<double>>(const std::uint64_t significand, int exponent, char* buffer, chars_format fmt) noexcept {
// Print significand by decomposing it into a 9-digit block and a 8-digit block.
std::uint32_t first_block;
std::uint32_t second_block {};
bool no_second_block;
if (significand >= 100000000)
{
first_block = std::uint32_t(significand / 100000000);
second_block = std::uint32_t(significand) - first_block * 100000000;
exponent += 8;
no_second_block = (second_block == 0);
}
else
{
first_block = std::uint32_t(significand);
no_second_block = true;
}
if (no_second_block)
{
print_9_digits(first_block, exponent, buffer);
}
else
{
// We proceed similarly to print_9_digits(), but since we do not need to remove
// trailing zeros, the procedure is a bit simpler.
if (first_block >= 100000000)
{
// The input is of 17 digits, thus there should be no trailing zero at all.
// The first block is of 9 digits.
// 1441151882 = ceil(2^57 / 1'0000'0000) + 1
auto prod = first_block * std::uint64_t(1441151882);
prod >>= 25;
std::memcpy(buffer, radix_100_head_table + std::uint32_t(prod >> 32) * 2, 2);
prod = std::uint32_t(prod) * std::uint64_t(100);
print_2_digits(std::uint32_t(prod >> 32), buffer + 2);
prod = std::uint32_t(prod) * std::uint64_t(100);
print_2_digits(std::uint32_t(prod >> 32), buffer + 4);
prod = std::uint32_t(prod) * std::uint64_t(100);
print_2_digits(std::uint32_t(prod >> 32), buffer + 6);
prod = std::uint32_t(prod) * std::uint64_t(100);
print_2_digits(std::uint32_t(prod >> 32), buffer + 8);
// The second block is of 8 digits.
// 281474978 = ceil(2^48 / 100'0000) + 1
prod = second_block * std::uint64_t(281474978);
prod >>= 16;
prod += 1;
print_2_digits(std::uint32_t(prod >> 32), buffer + 10);
prod = std::uint32_t(prod) * std::uint64_t(100);
print_2_digits(std::uint32_t(prod >> 32), buffer + 12);
prod = std::uint32_t(prod) * std::uint64_t(100);
print_2_digits(std::uint32_t(prod >> 32), buffer + 14);
prod = std::uint32_t(prod) * std::uint64_t(100);
print_2_digits(std::uint32_t(prod >> 32), buffer + 16);
exponent += 8;
buffer += 18;
}
else
{
if (first_block >= 1000000)
{
// 7 or 8 digits.
// 281474978 = ceil(2^48 / 100'0000) + 1
auto prod = first_block * std::uint64_t(281474978);
prod >>= 16;
const auto head_digits = std::uint32_t(prod >> 32);
std::memcpy(buffer, radix_100_head_table + head_digits * 2, 2);
buffer[2] = radix_100_table[head_digits * 2 + 1];
exponent += (6 + unsigned(head_digits >= 10));
buffer += unsigned(head_digits >= 10);
// Print remaining 6 digits.
prod = std::uint32_t(prod) * std::uint64_t(100);
print_2_digits(std::uint32_t(prod >> 32), buffer + 2);
prod = std::uint32_t(prod) * std::uint64_t(100);
print_2_digits(std::uint32_t(prod >> 32), buffer + 4);
prod = std::uint32_t(prod) * std::uint64_t(100);
print_2_digits(std::uint32_t(prod >> 32), buffer + 6);
buffer += 8;
}
else if (first_block >= 10000)
{
// 5 or 6 digits.
// 429497 = ceil(2^32 / 1'0000)
auto prod = first_block * std::uint64_t(429497);
const auto head_digits = std::uint32_t(prod >> 32);
std::memcpy(buffer, radix_100_head_table + head_digits * 2, 2);
buffer[2] = radix_100_table[head_digits * 2 + 1];
exponent += (4 + unsigned(head_digits >= 10));
buffer += unsigned(head_digits >= 10);
// Print remaining 4 digits.
prod = std::uint32_t(prod) * std::uint64_t(100);
print_2_digits(std::uint32_t(prod >> 32), buffer + 2);
prod = std::uint32_t(prod) * std::uint64_t(100);
print_2_digits(std::uint32_t(prod >> 32), buffer + 4);
buffer += 6;
}
else if (first_block >= 100)
{
// 3 or 4 digits.
// 42949673 = ceil(2^32 / 100)
auto prod = first_block * std::uint64_t(42949673);
const auto head_digits = std::uint32_t(prod >> 32);
std::memcpy(buffer, radix_100_head_table + head_digits * 2, 2);
buffer[2] = radix_100_table[head_digits * 2 + 1];
exponent += (2 + unsigned(head_digits >= 10));
buffer += unsigned(head_digits >= 10);
// Print remaining 2 digits.
prod = std::uint32_t(prod) * std::uint64_t(100);
print_2_digits(std::uint32_t(prod >> 32), buffer + 2);
buffer += 4;
}
else
{
// 1 or 2 digits.
std::memcpy(buffer, radix_100_head_table + first_block * 2, 2);
buffer[2] = radix_100_table[first_block * 2 + 1];
exponent += unsigned(first_block >= 10);
buffer += (2 + unsigned(first_block >= 10));
}
// Next, print the second block.
// The second block is of 8 digits, but we may have trailing zeros.
// 281474978 = ceil(2^48 / 100'0000) + 1
auto prod = second_block * std::uint64_t(281474978);
prod >>= 16;
prod += 1;
print_2_digits(std::uint32_t(prod >> 32), buffer);
// Remaining 6 digits are all zero?
if (std::uint32_t(prod) <= std::uint32_t((std::uint64_t(1) << 32) / 1000000))
{
buffer += (1 + unsigned(buffer[1] > '0'));
}
else
{
// Obtain the next two digits.
prod = std::uint32_t(prod) * std::uint64_t(100);
print_2_digits(std::uint32_t(prod >> 32), buffer + 2);
// Remaining 4 digits are all zero?
if (std::uint32_t(prod) <= std::uint32_t((std::uint64_t(1) << 32) / 10000))
{
buffer += (3 + unsigned(buffer[3] > '0'));
}
else
{
// Obtain the next two digits.
prod = std::uint32_t(prod) * std::uint64_t(100);
print_2_digits(std::uint32_t(prod >> 32), buffer + 4);
// Remaining 2 digits are all zero?
if (std::uint32_t(prod) <= std::uint32_t((std::uint64_t(1) << 32) / 100))
{
buffer += (5 + unsigned(buffer[5] > '0'));
}
else
{
// Obtain the last two digits.
prod = std::uint32_t(prod) * std::uint64_t(100);
print_2_digits(std::uint32_t(prod >> 32), buffer + 6);
buffer += (7 + unsigned(buffer[7] > '0'));
}
}
}
}
}
if (exponent < 0)
{
std::memcpy(buffer, "e-", 2);
buffer += 2;
exponent = -exponent;
}
else if (exponent == 0)
{
if (fmt == chars_format::scientific)
{
std::memcpy(buffer, "e+00", 4);
buffer += 4;
}
return buffer;
}
else
{
std::memcpy(buffer, "e+", 2);
buffer += 2;
}
if (exponent >= 100)
{
// d1 = exponent / 10; d2 = exponent % 10;
// 6554 = ceil(2^16 / 10)
auto prod = std::uint32_t(exponent) * std::uint32_t(6554);
auto d1 = prod >> 16;
prod = std::uint16_t(prod) * std::uint32_t(5); // * 10
auto d2 = prod >> 15; // >> 16
print_2_digits(d1, buffer);
print_1_digit(d2, buffer + 2);
buffer += 3;
}
else
{
print_2_digits(static_cast<std::uint32_t>(exponent), buffer);
buffer += 2;
}
return buffer;
}
#ifdef BOOST_MSVC
# pragma warning(pop)
#endif
}}}} // Namespaces
boost::charconv::to_chars_result boost::charconv::to_chars(char* first, char* last, float value,
boost::charconv::chars_format fmt, int precision) noexcept
{
return boost::charconv::detail::to_chars_float_impl(first, last, value, fmt, precision);
}
boost::charconv::to_chars_result boost::charconv::to_chars(char* first, char* last, double value,
boost::charconv::chars_format fmt, int precision) noexcept
{
return boost::charconv::detail::to_chars_float_impl(first, last, value, fmt, precision);
}
#ifdef BOOST_CHARCONV_FULL_LONG_DOUBLE_TO_CHARS_IMPL
boost::charconv::to_chars_result boost::charconv::to_chars(char* first, char* last, long double value,
boost::charconv::chars_format fmt, int precision) noexcept
{
return boost::charconv::detail::to_chars_float_impl(first, last, static_cast<double>(value), fmt, precision);
}
#else
boost::charconv::to_chars_result boost::charconv::to_chars( char* first, char* last, long double value ) noexcept
{
std::snprintf( first, last - first, "%.*Lg", std::numeric_limits<long double>::max_digits10, value );
return { first + std::strlen(first), std::errc() };
}
#endif