Files
callable_traits/test/bind_expression_parser.cpp

168 lines
4.9 KiB
C++

/*
Copyright Barrett Adair 2016
Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE.md or copy at http://boost.org/LICENSE_1_0.txt)
*/
//useless MSVC /Wall warnings
#pragma warning(disable: 4514 4711)
#include <cassert>
#include <type_traits>
#include <functional>
#include <iostream>
#include <sstream>
#include <memory>
#include <iostream>
#include <cstdint>
#include <callable_traits/callable_traits.hpp>
#ifndef CT_ASSERT
#define CT_ASSERT(...) static_assert(__VA_ARGS__, #__VA_ARGS__)
#endif //CT_ASSERT
using namespace std::placeholders;
namespace ct = callable_traits;
struct Letter {
virtual operator const char*() const volatile = 0;
};
#define DEFINE_TEST_LETTER(L) \
struct L : Letter { operator const char*() const volatile override { return #L; } }
DEFINE_TEST_LETTER(A);
DEFINE_TEST_LETTER(B);
DEFINE_TEST_LETTER(C);
DEFINE_TEST_LETTER(D);
DEFINE_TEST_LETTER(E);
DEFINE_TEST_LETTER(F);
DEFINE_TEST_LETTER(G);
// functions `ordered_letters`, `BEEF_returns_D`, `BEEF_returns_G`,
// and `BEEF_returns_B` are used to set up a complex bind expression
// with ct::bind_expr
auto ordered_letters(A a, B b, C c, D d, E e, F f, G g) {
std::stringstream ss{};
ss << a << b << c << d << e << f << g;
return ss.str();
}
auto BEEF_returns_D(B, E, E, F) {
return D{};
}
auto BEEF_returns_G(B, E, E, F) {
return G{};
}
auto BEEF_returns_B(B, E, E, F) {
return B{};
}
template <typename F, typename Tuple, std::size_t... I>
constexpr decltype(auto)
apply_helper(F&& f, Tuple&& t, std::index_sequence<I...>) {
return std::forward<F>(f)(std::get<I>(std::forward<Tuple>(t))...);
}
//used to apply the expected_args tuple to std::bind
template <typename F, typename Tuple>
constexpr decltype(auto)
apply(F&& f, Tuple&& t) {
return apply_helper(
std::forward<F>(f),
std::forward<Tuple>(t),
std::make_index_sequence<
std::tuple_size<std::remove_reference_t<Tuple>>::value
>{}
);
}
const auto a = A{};
const auto b = B{};
const auto c = C{};
const auto d = D{};
const auto e = E{};
const auto f = F{};
const auto g = G{};
// lets us create a complex bind expression with both
// `std::bind` and `ct::bind_expr`
#define BIND_WITH(bind_name) \
bind_name(&ordered_letters, \
_1, \
_2, \
_3, \
bind_name(&BEEF_returns_D, \
_2, \
e, \
_4, \
_7 \
), \
_5, \
_6, \
bind_name(&BEEF_returns_G, \
bind_name(&BEEF_returns_B, \
b, \
_10, \
e, \
f \
), \
_9, \
e, \
_8 \
) \
) \
/**/
template<typename BindExpr>
void check_expression_flattening();
int main() {
assert(ordered_letters(a, b, c, d, e, f, g) == "ABCDEFG");
using bind_expr = decltype(BIND_WITH(ct::bind_expr));
check_expression_flattening<bind_expr>();
using args = ct::args<bind_expr>;
// these are the argument types as dictated by
// the bind expression's placeholders
using expected_args = std::tuple<A, B, C, E, E, F, F, F, E, E>;
CT_ASSERT(std::is_same<args, expected_args>{});
auto runtime_test = BIND_WITH(std::bind);
assert(apply(runtime_test, expected_args{}) == "ABCDEFG");
return 0;
}
template<typename BindExpr>
void check_expression_flattening() {
using inner3 = decltype(ct::bind_expr(&BEEF_returns_B, b, _10, e, f));
using inner2 = decltype(ct::bind_expr(&BEEF_returns_G, inner3{}, _9, e, _8));
using inner1 = decltype(ct::bind_expr(&BEEF_returns_D, _2, e, _4, _7));
using bind_expr_check = decltype(ct::bind_expr(
&ordered_letters, _1, _2, _3,
inner1{},
_5, _6,
inner2{}
));
// this assert makes sure the BIND_WITH macro (defined above)
// hasn't been modified out of sync with this function definition
CT_ASSERT(std::is_same<BindExpr, bind_expr_check>{});
using flattened_exprs = typename BindExpr::flattened_bind_expressions;
using expected_exprs = std::tuple<BindExpr, inner1, inner2, inner3>;
CT_ASSERT(std::is_same<flattened_exprs, expected_exprs>{});
}