2
0
mirror of https://github.com/boostorg/build.git synced 2026-02-16 01:12:13 +00:00
Files
build/new/container.jam
Dave Abrahams 5eb7ea1192 Note: there is currently a circular dependency between type.jam and
virtual-target.jam.

- Added the missing explicit imports, now that we don't dump
  everything into the global module with qualification

- stopped using the feature-space hack for temporary testing states of
  the feature module.  Instead we move its global variable definitions
  to a temporary module.

- the way feature.action was invoking the rule it was being passed was
  evil.  Now you pass (even local) rules without qualification and
  they are invoked in the source module context.

- module __test__ rules are always executed in a separate module, so
  that their import dependencies can be separated from those of the
  module being tested.

- better reporting of circular module-loading dependencies
  implemented.

- minor changes:

    property-set.jam:  moved .empty initialization to avert circular
    load dependency .

    symlink.jam: fixed global variable naming.


[SVN r18407]
2003-05-15 22:22:13 +00:00

305 lines
8.0 KiB
Plaintext

# Copyright (C) 2002, Rene Rivera. Permission to copy, use, modify, sell and
# distribute this software is granted provided this copyright notice appears in
# all copies. This software is provided "as is" without express or implied
# warranty, and with no claim as to its suitability for any purpose.
# Various container classes.
import class : * ;
# Base for container objects. This lets us construct recursive structures.
# That is containers with containers in them, specifically so we can tell
# literal values from node values.
#
rule node (
value ? # Optional value to set node to initially.
)
{
self.value = $(value) ;
# Set the value of this node, passing nothing will clear it.
#
rule set ( value ? )
{
self.value = $(value) ;
}
# Get the value of this node.
#
rule get ( )
{
return $(self.value) ;
}
}
class node ;
# A simple vector. Interface mimics the C++ std::vector and std::list,
# with the exception that indices are one (1) based to follow Jam standard.
#
# TODO: Possibly add assertion checks.
#
rule vector (
values * # Initial contents of vector.
)
{
import numbers : range ;
import utility ;
import sequence ;
node.__init__ ;
self.value = $(values) ;
# Get the value of the first element.
#
rule front ( )
{
return $(self.value[1]) ;
}
# Get the value of the last element.
#
rule back ( )
{
return $(self.value[-1]) ;
}
# Get the value of the element at the given index, one based.
# Access to elements of recursive structures is supported directly.
# Specifying additional index values recursively accesses the elements as
# containers. For example: [ $(v).at 1 : 2 ] would retrieve the second element
# of our first element. This assuming the first element is a container.
#
rule at (
index # The element index, one based.
: * # Additional indices to access recursively.
)
{
local r = $(self.value[$(index)]) ;
if $(2)
{
r = [ $(r).at $(2) : $(3) : $(4) : $(5) : $(6) : $(7) : $(8) : $(9) ] ;
}
return $(r) ;
}
# Get the value contained in the given element. This has the same
# functionality and interface as "at" but in addition gets the value
# of the referenced element, assuming it's a "node".
#
rule get-at (
index # The element index, one based.
: * # Additional indices to access recursively.
)
{
local r = $(self.value[$(index)]) ;
if $(2)
{
r = [ $(r).at $(2) : $(3) : $(4) : $(5) : $(6) : $(7) : $(8) : $(9) ] ;
}
return [ $(r).get ] ;
}
# Insert the given value into the front of the vector pushing the
# rest of the elements back.
#
rule push-front (
value # Value to become first element.
)
{
self.value = $(value) $(self.value) ;
}
# Remove the front element from the vector. Does not return the value.
# No effect if vector is empty.
#
rule pop-front ( )
{
self.value = $(self.value[2-]) ;
}
# Add the given value at the end of the vector.
#
rule push-back (
value # Value to become back element.
)
{
self.value += $(value) ;
}
# Remove the back element from the vector. Does not return the value.
# No effect if vector is empty.
#
rule pop-back ( )
{
self.value = $(self.value[1--2]) ;
}
# Insert the given value at the given index, one based. The values
# at and to the right of the of the index are push back to make room
# for the new value.
#
rule insert (
index # The index to insert at, one based.
: value # The value to insert.
)
{
local left = $(self.value[1-$(index)]) ;
left = $(left[1--2]) ;
local right = $(self.value[$(index)-]) ;
self.value = $(left) $(value) $(right) ;
}
# Remove one or more elements from the vector. The range is inclusive,
# and not specifying an end is equivalent to the [start,start] range.
#
rule erase (
start # Index of first element ro remove.
end ? # Optional, index of last element to remove.
)
{
end ?= $(start) ;
local left = $(self.value[1-$(start)]) ;
left = $(left[1--2]) ;
local right = $(self.value[$(end)-]) ;
right = $(right[2-]) ;
self.value = $(left) $(right) ;
}
# Remove all elements from the vector.
#
rule clear ( )
{
self.value = ;
}
# The number of elements in the vector.
#
rule size ( )
{
return [ sequence.length $(self.value) ] ;
}
# Returns "true" if there are NO elements in the vector, empty
# otherwise.
#
rule empty ( )
{
if ! $(self.value)
{
return true ;
}
}
# Returns the list of all valid indices for this vector.
rule indices ( )
{
if ! [ empty ]
{
local size = [ size ] ;
return [ range 1 : $(size) ] $(size) ;
}
}
# Returns the textual representation of content.
rule str ( )
{
return "[" [ sequence.transform utility.str : $(self.value) ] "]" ;
}
# Sorts the vector inplace, calling 'utility.less' for
# comparisons.
rule sort ( )
{
self.value =
[ sequence.insertion-sort $(self.value) : utility.less ] ;
}
# Returns true if content is equal to the content of other vector.
# Uses 'utility.equal' for comparison.
rule equal ( another )
{
local mismatch ;
if [ size ] = [ $(another).size ]
{
for local i in [ indices ]
{
if ! [ utility.equal [ at $(i) ] [ $(another).at $(i) ] ]
{
mismatch = true ;
}
}
}
if ! $(mismatch)
{
return true ;
}
}
}
class vector : node ;
module class@vector
{
import numbers : range ;
}
local rule __test__ ( )
{
import assert ;
import class : new ;
local l = [ new vector ] ;
assert.result 0 : $(l).size ;
assert.result : $(l).indices ;
assert.result "[" "]" : $(l).str ;
$(l).push-back b ;
$(l).push-front a ;
assert.result 1 2 : $(l).indices ;
assert.result "[" a b "]" : $(l).str ;
assert.result a : $(l).front ;
assert.result b : $(l).back ;
$(l).insert 2 : d ;
$(l).insert 2 : c ;
$(l).insert 4 : f ;
$(l).insert 4 : e ;
$(l).pop-back ;
assert.result 5 : $(l).size ;
assert.result d : $(l).at 3 ;
$(l).pop-front ;
assert.result c : $(l).front ;
assert.false $(l).empty ;
$(l).erase 3 4 ;
assert.result 2 : $(l).size ;
local l2 = [ new vector q w e r t y ] ;
assert.result 6 : $(l2).size ;
$(l).push-back $(l2) ;
assert.result 3 : $(l).size ;
local l2-alias = [ $(l).back ] ;
assert.result e : $(l2-alias).at 3 ;
$(l).clear ;
assert.true $(l).empty ;
assert.false $(l2-alias).empty ;
$(l2).pop-back ;
assert.result t : $(l2-alias).back ;
local l3 = [ new vector ] ;
$(l3).push-back [ new vector 1 2 3 4 5 ] ;
$(l3).push-back [ new vector a b c ] ;
assert.result "[" "[" 1 2 3 4 5 "]" "[" a b c "]" "]" : $(l3).str ;
$(l3).push-back [ new vector [ new vector x y z ] [ new vector 7 8 9 ] ] ;
assert.result 1 : $(l3).at 1 : 1 ;
assert.result b : $(l3).at 2 : 2 ;
assert.result a b c : $(l3).get-at 2 ;
assert.result 7 8 9 : $(l3).get-at 3 : 2 ;
local l4 = [ new vector 4 3 6 ] ;
$(l4).sort ;
assert.result 3 4 6 : $(l4).get ;
assert.false $(l4).equal $(l3) ;
local l5 = [ new vector 3 4 6 ] ;
assert.true $(l4).equal $(l5) ;
local l6 = [ new vector [ new vector 1 2 3 ] ] ;
assert.true $(l6).equal [ new vector [ new vector 1 2 3 ] ] ;
}