2
0
mirror of https://github.com/boostorg/build.git synced 2026-02-16 13:22:11 +00:00
Files
build/v2/util/container.jam
Vladimir Prus 28867fecac Allow a generator's 'run' method to return additional usage requirements
as the first elements of result. Those usage requirements will be combined
with explicitly specified for the main target.

This is yet another step towards making 'main target classes' unnecessary.

* build/generators.jam
  (try-one-generator): Check if generator returned usage requirements or not.
  (construct): Make sure first element of result is always property set.
  (many other methods): Induced changes

* tools/builtin.jam
  (exe-target-class, lib-target-class): Remove.
  (linking-generator, seached-lib-generator): Compute usage requirements.
  (archiving-generator): New class


[SVN r26192]
2004-11-12 08:11:14 +00:00

314 lines
8.0 KiB
Plaintext

# (C) Copyright Rene Rivera, 2002.
#
# See accompanying license for terms and conditions of use.
#
# Various container classes.
import "class" : * ;
# Base for container objects. This lets us construct recursive structures.
# That is containers with containers in them, specifically so we can tell
# literal values from node values.
#
class node
{
rule __init__ (
value ? # Optional value to set node to initially.
)
{
self.value = $(value) ;
}
# Set the value of this node, passing nothing will clear it.
#
rule set ( value * )
{
self.value = $(value) ;
}
# Get the value of this node.
#
rule get ( )
{
return $(self.value) ;
}
}
# A simple vector. Interface mimics the C++ std::vector and std::list,
# with the exception that indices are one (1) based to follow Jam standard.
#
# TODO: Possibly add assertion checks.
#
class vector : node
{
import numbers : range ;
import utility ;
import sequence ;
rule __init__ (
values * # Initial contents of vector.
)
{
node.__init__ ;
self.value = $(values) ;
}
# Get the value of the first element.
#
rule front ( )
{
return $(self.value[1]) ;
}
# Get the value of the last element.
#
rule back ( )
{
return $(self.value[-1]) ;
}
# Get the value of the element at the given index, one based.
# Access to elements of recursive structures is supported directly.
# Specifying additional index values recursively accesses the elements as
# containers. For example: [ $(v).at 1 : 2 ] would retrieve the second element
# of our first element. This assuming the first element is a container.
#
rule at (
index # The element index, one based.
: * # Additional indices to access recursively.
)
{
local r = $(self.value[$(index)]) ;
if $(2)
{
r = [ $(r).at $(2) : $(3) : $(4) : $(5) : $(6) : $(7) : $(8) : $(9) ] ;
}
return $(r) ;
}
# Get the value contained in the given element. This has the same
# functionality and interface as "at" but in addition gets the value
# of the referenced element, assuming it's a "node".
#
rule get-at (
index # The element index, one based.
: * # Additional indices to access recursively.
)
{
local r = $(self.value[$(index)]) ;
if $(2)
{
r = [ $(r).at $(2) : $(3) : $(4) : $(5) : $(6) : $(7) : $(8) : $(9) ] ;
}
return [ $(r).get ] ;
}
# Insert the given value into the front of the vector pushing the
# rest of the elements back.
#
rule push-front (
value # Value to become first element.
)
{
self.value = $(value) $(self.value) ;
}
# Remove the front element from the vector. Does not return the value.
# No effect if vector is empty.
#
rule pop-front ( )
{
self.value = $(self.value[2-]) ;
}
# Add the given value at the end of the vector.
#
rule push-back (
value # Value to become back element.
)
{
self.value += $(value) ;
}
# Remove the back element from the vector. Does not return the value.
# No effect if vector is empty.
#
rule pop-back ( )
{
self.value = $(self.value[1--2]) ;
}
# Insert the given value at the given index, one based. The values
# at and to the right of the of the index are push back to make room
# for the new value.
#
rule insert (
index # The index to insert at, one based.
: value # The value to insert.
)
{
local left = $(self.value[1-$(index)]) ;
left = $(left[1--2]) ;
local right = $(self.value[$(index)-]) ;
self.value = $(left) $(value) $(right) ;
}
# Remove one or more elements from the vector. The range is inclusive,
# and not specifying an end is equivalent to the [start,start] range.
#
rule erase (
start # Index of first element ro remove.
end ? # Optional, index of last element to remove.
)
{
end ?= $(start) ;
local left = $(self.value[1-$(start)]) ;
left = $(left[1--2]) ;
local right = $(self.value[$(end)-]) ;
right = $(right[2-]) ;
self.value = $(left) $(right) ;
}
# Remove all elements from the vector.
#
rule clear ( )
{
self.value = ;
}
# The number of elements in the vector.
#
rule size ( )
{
return [ sequence.length $(self.value) ] ;
}
# Returns "true" if there are NO elements in the vector, empty
# otherwise.
#
rule empty ( )
{
if ! $(self.value)
{
return true ;
}
}
# Returns the list of all valid indices for this vector.
rule indices ( )
{
if ! [ empty ]
{
local size = [ size ] ;
return [ range 1 : $(size) ] $(size) ;
}
}
# Returns the textual representation of content.
rule str ( )
{
return "[" [ sequence.transform utility.str : $(self.value) ] "]" ;
}
# Sorts the vector inplace, calling 'utility.less' for
# comparisons.
# NOTE: this rule is unused at the moment.
rule sort ( )
{
self.value =
[ sequence.insertion-sort $(self.value) : utility.less ] ;
}
# Returns true if content is equal to the content of other vector.
# Uses 'utility.equal' for comparison.
rule equal ( another )
{
local mismatch ;
if [ size ] = [ $(another).size ]
{
for local i in [ indices ]
{
if ! [ utility.equal [ at $(i) ] [ $(another).at $(i) ] ]
{
mismatch = true ;
}
}
}
else
{
mismatch = true ;
}
if ! $(mismatch)
{
return true ;
}
}
}
local rule __test__ ( )
{
import assert ;
import "class" : new ;
local l = [ new vector ] ;
assert.result 0 : $(l).size ;
assert.result : $(l).indices ;
assert.result "[" "]" : $(l).str ;
$(l).push-back b ;
$(l).push-front a ;
assert.result 1 2 : $(l).indices ;
assert.result "[" a b "]" : $(l).str ;
assert.result a : $(l).front ;
assert.result b : $(l).back ;
$(l).insert 2 : d ;
$(l).insert 2 : c ;
$(l).insert 4 : f ;
$(l).insert 4 : e ;
$(l).pop-back ;
assert.result 5 : $(l).size ;
assert.result d : $(l).at 3 ;
$(l).pop-front ;
assert.result c : $(l).front ;
assert.false $(l).empty ;
$(l).erase 3 4 ;
assert.result 2 : $(l).size ;
local l2 = [ new vector q w e r t y ] ;
assert.result 6 : $(l2).size ;
$(l).push-back $(l2) ;
assert.result 3 : $(l).size ;
local l2-alias = [ $(l).back ] ;
assert.result e : $(l2-alias).at 3 ;
$(l).clear ;
assert.true $(l).empty ;
assert.false $(l2-alias).empty ;
$(l2).pop-back ;
assert.result t : $(l2-alias).back ;
local l3 = [ new vector ] ;
$(l3).push-back [ new vector 1 2 3 4 5 ] ;
$(l3).push-back [ new vector a b c ] ;
assert.result "[" "[" 1 2 3 4 5 "]" "[" a b c "]" "]" : $(l3).str ;
$(l3).push-back [ new vector [ new vector x y z ] [ new vector 7 8 9 ] ] ;
assert.result 1 : $(l3).at 1 : 1 ;
assert.result b : $(l3).at 2 : 2 ;
assert.result a b c : $(l3).get-at 2 ;
assert.result 7 8 9 : $(l3).get-at 3 : 2 ;
local l4 = [ new vector 4 3 6 ] ;
$(l4).sort ;
assert.result 3 4 6 : $(l4).get ;
assert.false $(l4).equal $(l3) ;
local l5 = [ new vector 3 4 6 ] ;
assert.true $(l4).equal $(l5) ;
# Check that vectors of different sizes are considered non-equal
$(l5).pop-back ;
assert.false $(l4).equal $(l5) ;
local l6 = [ new vector [ new vector 1 2 3 ] ] ;
assert.true $(l6).equal [ new vector [ new vector 1 2 3 ] ] ;
}