/* * Copyright 1993, 1995 Christopher Seiwald. * * This file is part of Jam - see jam.c for Copyright information. */ # include "jam.h" # include "hash.h" # include "compile.h" # include "object.h" # include /* * hash.c - simple in-memory hashing routines * * External routines: * * hashinit() - initialize a hash table, returning a handle * hashitem() - find a record in the table, and optionally enter a new one * hashdone() - free a hash table, given its handle * * Internal routines: * * hashrehash() - resize and rebuild hp->tab, the hash table * * 4/29/93 - ensure ITEM's are aligned */ /* */ #define HASH_DEBUG_PROFILE 1 /* */ /* Header attached to all data items entered into a hash table. */ struct hashhdr { struct item * next; }; typedef struct item { struct hashhdr hdr; } ITEM ; # define MAX_LISTS 32 struct hash { /* * the hash table, just an array of item pointers */ struct { int nel; ITEM **base; } tab; int bloat; /* tab.nel / items.nel */ int inel; /* initial number of elements */ /* * the array of records, maintained by these routines * essentially a microallocator */ struct { int more; /* how many more ITEMs fit in lists[ list ] */ ITEM *free; /* free list of items */ char *next; /* where to put more ITEMs in lists[ list ] */ int datalen; /* length of records in this hash table */ int size; /* sizeof( ITEM ) + aligned datalen */ int nel; /* total ITEMs held by all lists[] */ int list; /* index into lists[] */ struct { int nel; /* total ITEMs held by this list */ char *base; /* base of ITEMs array */ } lists[ MAX_LISTS ]; } items; const char * name; /* just for hashstats() */ }; static void hashrehash( struct hash *hp ); static void hashstat( struct hash *hp ); static void * hash_mem_alloc(size_t datalen, size_t size); static void hash_mem_free(size_t datalen, void * data); #ifdef OPT_BOEHM_GC static void hash_mem_finalizer(char * key, struct hash * hp); #endif static unsigned int hash_keyval( OBJECT * key ) { return object_hash( key ); } #define hash_bucket(hp,keyval) ((hp)->tab.base + ( (keyval) % (hp)->tab.nel )) #define hash_data_key(data) (*(OBJECT * *)(data)) #define hash_item_data(item) ((HASHDATA *)((char *)item + sizeof(struct hashhdr))) #define hash_item_key(item) (hash_data_key(hash_item_data(item))) /* Find the hash item for the given data. Returns pointer to the item and if given a pointer to the item before the found item. If it's the first item in a bucket, there is no previous item, and zero is returned for the previous item instead. */ static ITEM * hash_search( struct hash *hp, unsigned int keyval, OBJECT * keydata, ITEM * * previous ) { ITEM * i = *hash_bucket(hp,keyval); ITEM * p = 0; for ( ; i; i = i->hdr.next ) { if ( object_equal( hash_item_key( i ), keydata ) ) { if (previous) { *previous = p; } return i; } p = i; } return 0; } /* * hash_insert() - insert a record in the table or return the existing one */ HASHDATA * hash_insert( struct hash * hp, OBJECT * key, int * found ) { ITEM * i; unsigned int keyval = hash_keyval( key ); #ifdef HASH_DEBUG_PROFILE profile_frame prof[1]; if ( DEBUG_PROFILE ) profile_enter( 0, prof ); #endif if ( !hp->items.more ) hashrehash( hp ); i = hash_search( hp, keyval, key, 0 ); if ( i ) { *found = 1; } else { ITEM * * base = hash_bucket( hp, keyval ); /* try to grab one from the free list */ if ( hp->items.free ) { i = hp->items.free; hp->items.free = i->hdr.next; assert( hash_item_key( i ) == 0 ); } else { i = (ITEM *)hp->items.next; hp->items.next += hp->items.size; } hp->items.more--; i->hdr.next = *base; *base = i; *found = 0; } #ifdef HASH_DEBUG_PROFILE if ( DEBUG_PROFILE ) profile_exit( prof ); #endif return hash_item_data( i ); } /* * hash_find() - find a record in the table or NULL if none exists */ HASHDATA * hash_find( struct hash *hp, OBJECT *key ) { ITEM *i; unsigned int keyval = hash_keyval(key); #ifdef HASH_DEBUG_PROFILE profile_frame prof[1]; if ( DEBUG_PROFILE ) profile_enter( 0, prof ); #endif if ( !hp->items.nel ) { #ifdef HASH_DEBUG_PROFILE if ( DEBUG_PROFILE ) profile_exit( prof ); #endif return 0; } i = hash_search( hp, keyval, key, 0 ); #ifdef HASH_DEBUG_PROFILE if ( DEBUG_PROFILE ) profile_exit( prof ); #endif if (i) { return hash_item_data( i ); } else { return 0; } } /* * hashrehash() - resize and rebuild hp->tab, the hash table */ static void hashrehash( register struct hash *hp ) { int i = ++hp->items.list; hp->items.more = i ? 2 * hp->items.nel : hp->inel; hp->items.next = (char *)hash_mem_alloc( hp->items.datalen, hp->items.more * hp->items.size ); hp->items.free = 0; hp->items.lists[i].nel = hp->items.more; hp->items.lists[i].base = hp->items.next; hp->items.nel += hp->items.more; if ( hp->tab.base ) hash_mem_free( hp->items.datalen, (char *)hp->tab.base ); hp->tab.nel = hp->items.nel * hp->bloat; hp->tab.base = (ITEM **)hash_mem_alloc( hp->items.datalen, hp->tab.nel * sizeof(ITEM **) ); memset( (char *)hp->tab.base, '\0', hp->tab.nel * sizeof( ITEM * ) ); for ( i = 0; i < hp->items.list; ++i ) { int nel = hp->items.lists[i].nel; char *next = hp->items.lists[i].base; for ( ; nel--; next += hp->items.size ) { register ITEM *i = (ITEM *)next; ITEM **ip = hp->tab.base + object_hash( hash_item_key( i ) ) % hp->tab.nel; /* code currently assumes rehashing only when there are no free items */ assert( hash_item_key( i ) != 0 ); i->hdr.next = *ip; *ip = i; } } } void hashenumerate( struct hash * hp, void (* f)( void *, void * ), void * data ) { int i; for ( i = 0; i <= hp->items.list; ++i ) { char * next = hp->items.lists[i].base; int nel = hp->items.lists[i].nel; if ( i == hp->items.list ) nel -= hp->items.more; for ( ; nel--; next += hp->items.size ) { ITEM * i = (ITEM *)next; if ( hash_item_key( i ) != 0 ) /* DO not enumerate freed items. */ f( hash_item_data( i ), data ); } } } /* --- */ # define ALIGNED(x) ( ( x + sizeof( ITEM ) - 1 ) & ~( sizeof( ITEM ) - 1 ) ) /* * hashinit() - initialize a hash table, returning a handle */ struct hash * hashinit( int datalen, const char *name ) { struct hash *hp = (struct hash *)hash_mem_alloc( datalen, sizeof( *hp ) ); hp->bloat = 3; hp->tab.nel = 0; hp->tab.base = (ITEM **)0; hp->items.more = 0; hp->items.free = 0; hp->items.datalen = datalen; hp->items.size = sizeof( struct hashhdr ) + ALIGNED( datalen ); hp->items.list = -1; hp->items.nel = 0; hp->inel = 11 /* 47 */; hp->name = name; return hp; } /* * hashdone() - free a hash table, given its handle */ void hashdone( struct hash * hp ) { int i; if ( !hp ) return; if ( DEBUG_MEM || DEBUG_PROFILE ) hashstat( hp ); if ( hp->tab.base ) hash_mem_free( hp->items.datalen, (char *)hp->tab.base ); for ( i = 0; i <= hp->items.list; ++i ) hash_mem_free( hp->items.datalen, hp->items.lists[i].base ); hash_mem_free( hp->items.datalen, (char *)hp ); } static void * hash_mem_alloc(size_t datalen, size_t size) { return BJAM_MALLOC(size); } static void hash_mem_free(size_t datalen, void * data) { BJAM_FREE(data); } /* ---- */ static void hashstat( struct hash * hp ) { ITEM * * tab = hp->tab.base; int nel = hp->tab.nel; int count = 0; int sets = 0; int run = tab && ( tab[ nel - 1 ] != (ITEM *)0 ); int i; int here; for ( i = nel; i > 0; --i ) { if ( ( here = ( *tab++ != (ITEM *)0 ) ) ) count++; if ( here && !run ) sets++; run = here; } printf( "%s table: %d+%d+%d (%dK+%luK) items+table+hash, %f density\n", hp->name, count, hp->items.nel, hp->tab.nel, hp->items.nel * hp->items.size / 1024, (long unsigned)hp->tab.nel * sizeof( ITEM ** ) / 1024, (float)count / (float)sets ); }