/* Fast open-addressing hash table. * * Copyright 2022 Joaquin M Lopez Munoz. * Distributed under the Boost Software License, Version 1.0. * (See accompanying file LICENSE_1_0.txt or copy at * http://www.boost.org/LICENSE_1_0.txt) * * See https://www.boost.org/libs/unordered for library home page. */ #ifndef BOOST_UNORDERED_DETAIL_CFOA_HPP #define BOOST_UNORDERED_DETAIL_CFOA_HPP #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "rw_spinlock.hpp" #include "oneapi/tbb/spin_rw_mutex.h" #if defined(__SSE2__)||\ defined(_M_X64)||(defined(_M_IX86_FP)&&_M_IX86_FP>=2) #define BOOST_UNORDERED_SSE2 #include #elif defined(__ARM_NEON)&&!defined(__ARM_BIG_ENDIAN) #define BOOST_UNORDERED_LITTLE_ENDIAN_NEON #include #endif #ifdef __has_builtin #define BOOST_UNORDERED_HAS_BUILTIN(x) __has_builtin(x) #else #define BOOST_UNORDERED_HAS_BUILTIN(x) 0 #endif #if !defined(NDEBUG) #define BOOST_UNORDERED_ASSUME(cond) BOOST_ASSERT(cond) #elif BOOST_UNORDERED_HAS_BUILTIN(__builtin_assume) #define BOOST_UNORDERED_ASSUME(cond) __builtin_assume(cond) #elif defined(__GNUC__) || BOOST_UNORDERED_HAS_BUILTIN(__builtin_unreachable) #define BOOST_UNORDERED_ASSUME(cond) \ do{ \ if(!(cond))__builtin_unreachable(); \ }while(0) #elif defined(_MSC_VER) #define BOOST_UNORDERED_ASSUME(cond) __assume(cond) #else #define BOOST_UNORDERED_ASSUME(cond) \ do{ \ static_cast(false&&(cond)); \ }while(0) #endif #define BOOST_UNORDERED_STATIC_ASSERT_HASH_PRED(Hash, Pred) \ static_assert(boost::is_nothrow_swappable::value, \ "Template parameter Hash is required to be nothrow Swappable."); \ static_assert(boost::is_nothrow_swappable::value, \ "Template parameter Pred is required to be nothrow Swappable"); namespace boost{ namespace unordered{ namespace detail{ namespace cfoa{ static const std::size_t default_bucket_count = 0; /* foa::table is an open-addressing hash table serving as the foundational core * of boost::unordered_[flat|node]_[map|set]. Its main internal design aspects * are: * * - Element slots are logically split into groups of size N=15. The number * of groups is always a power of two, so the number of allocated slots is of the form (N*2^n)-1 (final slot reserved for a sentinel mark). * - Positioning is done at the group level rather than the slot level, that * is, for any given element its hash value is used to locate a group and * insertion is performed on the first available element of that group; * if the group is full (overflow), further groups are tried using * quadratic probing. * - Each group has an associated 16B metadata word holding reduced hash * values and overflow information. Reduced hash values are used to * accelerate lookup within the group by using 128-bit SIMD or 64-bit word * operations. */ /* group15 controls metadata information of a group of N=15 element slots. * The 16B metadata word is organized as follows (LSB depicted rightmost): * * +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ * |ofw|h14|h13|h13|h11|h10|h09|h08|h07|h06|h05|h04|h03|h02|h01|h00| * +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ * * hi is 0 if the i-th element slot is avalaible, 1 to mark a sentinel and, * when the slot is occupied, a value in the range [2,255] obtained from the * element's original hash value. * ofw is the so-called overflow byte. If insertion of an element with hash * value h is tried on a full group, then the (h%8)-th bit of the overflow * byte is set to 1 and a further group is probed. Having an overflow byte * brings two advantages: * * - There's no need to reserve a special value of hi to mark tombstone * slots; each reduced hash value keeps then log2(254)=7.99 bits of the * original hash (alternative approaches reserve one full bit to mark * if the slot is available/deleted, so their reduced hash values are 7 bit * strong only). * - When doing an unsuccessful lookup (i.e. the element is not present in * the table), probing stops at the first non-overflowed group. Having 8 * bits for signalling overflow makes it very likely that we stop at the * current group (this happens when no element with the same (h%8) value * has overflowed in the group), saving us an additional group check even * under high-load/high-erase conditions. It is critical that hash * reduction is invariant under modulo 8 (see maybe_caused_overflow). * * When looking for an element with hash value h, match(h) returns a bitmask * signalling which slots have the same reduced hash value. If available, * match uses SSE2 or (little endian) Neon 128-bit SIMD operations. On non-SIMD * scenarios, the logical layout described above is physically mapped to two * 64-bit words with *bit interleaving*, i.e. the least significant 16 bits of * the first 64-bit word contain the least significant bits of each byte in the * "logical" 128-bit word, and so forth. With this layout, match can be * implemented with 4 ANDs, 3 shifts, 2 XORs, 1 OR and 1 NOT. * * group15 has no user-defined ctor so that it's a trivial type and can be * initialized via memset etc. Where needed, group15::initialize sets the * metadata to all zeros. */ struct group_access { struct dummy_group_access_type { boost::uint32_t storage[2]={0,0}; }; inline auto shared_access() { return std::shared_lock(mtx); } inline auto exclusive_access() { return std::scoped_lock(mtx); } inline auto& counter(){return cnt;} private: rw_spinlock mtx; std::atomic_uint32_t cnt; }; template struct protected_group:Group,group_access { struct dummy_group_type { typename Group::dummy_group_type group_storage; group_access::dummy_group_access_type access_storage; }; }; #if defined(BOOST_UNORDERED_SSE2) static_assert(sizeof(std::atomic)==1); struct group15 { static constexpr int N=15; struct dummy_group_type { alignas(16) unsigned char storage[N+1]= {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; }; inline void initialize() { _mm_store_si128( reinterpret_cast<__m128i*>(m),_mm_setzero_si128()); } bool occupied(std::size_t pos)const { BOOST_ASSERT(pos(pc)-> store(available_,std::memory_order_release); } inline int match(std::size_t hash)const { auto w=_mm_load_si128(reinterpret_cast(m)); return _mm_movemask_epi8(_mm_cmpeq_epi8(w,_mm_set1_epi32(match_word(hash))))&0x7FFF; } inline bool is_not_overflowed(std::size_t hash)const { static constexpr unsigned char shift[]={1,2,4,8,16,32,64,128}; return !(overflow().load(std::memory_order_acquire)&shift[hash%8]); } inline void mark_overflow(std::size_t hash) { overflow().fetch_or( static_cast(1<<(hash%8)),std::memory_order_release); } static inline bool maybe_caused_overflow(unsigned char* pc) { std::size_t pos=reinterpret_cast(pc)%sizeof(group15); group15 *pg=reinterpret_cast(pc-pos); return !pg->is_not_overflowed(*pc); }; inline int match_available()const { auto w=_mm_load_si128(reinterpret_cast(m)); return _mm_movemask_epi8( _mm_cmpeq_epi8(w,_mm_setzero_si128()))&0x7FFF; } inline int match_occupied()const { return (~match_available())&0x7FFF; } private: static constexpr unsigned char available_=0, sentinel_=1; inline static int match_word(std::size_t hash) { static constexpr boost::uint32_t word[]= { 0x08080808u,0x09090909u,0x02020202u,0x03030303u,0x04040404u,0x05050505u,0x06060606u,0x07070707u, 0x08080808u,0x09090909u,0x0A0A0A0Au,0x0B0B0B0Bu,0x0C0C0C0Cu,0x0D0D0D0Du,0x0E0E0E0Eu,0x0F0F0F0Fu, 0x10101010u,0x11111111u,0x12121212u,0x13131313u,0x14141414u,0x15151515u,0x16161616u,0x17171717u, 0x18181818u,0x19191919u,0x1A1A1A1Au,0x1B1B1B1Bu,0x1C1C1C1Cu,0x1D1D1D1Du,0x1E1E1E1Eu,0x1F1F1F1Fu, 0x20202020u,0x21212121u,0x22222222u,0x23232323u,0x24242424u,0x25252525u,0x26262626u,0x27272727u, 0x28282828u,0x29292929u,0x2A2A2A2Au,0x2B2B2B2Bu,0x2C2C2C2Cu,0x2D2D2D2Du,0x2E2E2E2Eu,0x2F2F2F2Fu, 0x30303030u,0x31313131u,0x32323232u,0x33333333u,0x34343434u,0x35353535u,0x36363636u,0x37373737u, 0x38383838u,0x39393939u,0x3A3A3A3Au,0x3B3B3B3Bu,0x3C3C3C3Cu,0x3D3D3D3Du,0x3E3E3E3Eu,0x3F3F3F3Fu, 0x40404040u,0x41414141u,0x42424242u,0x43434343u,0x44444444u,0x45454545u,0x46464646u,0x47474747u, 0x48484848u,0x49494949u,0x4A4A4A4Au,0x4B4B4B4Bu,0x4C4C4C4Cu,0x4D4D4D4Du,0x4E4E4E4Eu,0x4F4F4F4Fu, 0x50505050u,0x51515151u,0x52525252u,0x53535353u,0x54545454u,0x55555555u,0x56565656u,0x57575757u, 0x58585858u,0x59595959u,0x5A5A5A5Au,0x5B5B5B5Bu,0x5C5C5C5Cu,0x5D5D5D5Du,0x5E5E5E5Eu,0x5F5F5F5Fu, 0x60606060u,0x61616161u,0x62626262u,0x63636363u,0x64646464u,0x65656565u,0x66666666u,0x67676767u, 0x68686868u,0x69696969u,0x6A6A6A6Au,0x6B6B6B6Bu,0x6C6C6C6Cu,0x6D6D6D6Du,0x6E6E6E6Eu,0x6F6F6F6Fu, 0x70707070u,0x71717171u,0x72727272u,0x73737373u,0x74747474u,0x75757575u,0x76767676u,0x77777777u, 0x78787878u,0x79797979u,0x7A7A7A7Au,0x7B7B7B7Bu,0x7C7C7C7Cu,0x7D7D7D7Du,0x7E7E7E7Eu,0x7F7F7F7Fu, 0x80808080u,0x81818181u,0x82828282u,0x83838383u,0x84848484u,0x85858585u,0x86868686u,0x87878787u, 0x88888888u,0x89898989u,0x8A8A8A8Au,0x8B8B8B8Bu,0x8C8C8C8Cu,0x8D8D8D8Du,0x8E8E8E8Eu,0x8F8F8F8Fu, 0x90909090u,0x91919191u,0x92929292u,0x93939393u,0x94949494u,0x95959595u,0x96969696u,0x97979797u, 0x98989898u,0x99999999u,0x9A9A9A9Au,0x9B9B9B9Bu,0x9C9C9C9Cu,0x9D9D9D9Du,0x9E9E9E9Eu,0x9F9F9F9Fu, 0xA0A0A0A0u,0xA1A1A1A1u,0xA2A2A2A2u,0xA3A3A3A3u,0xA4A4A4A4u,0xA5A5A5A5u,0xA6A6A6A6u,0xA7A7A7A7u, 0xA8A8A8A8u,0xA9A9A9A9u,0xAAAAAAAAu,0xABABABABu,0xACACACACu,0xADADADADu,0xAEAEAEAEu,0xAFAFAFAFu, 0xB0B0B0B0u,0xB1B1B1B1u,0xB2B2B2B2u,0xB3B3B3B3u,0xB4B4B4B4u,0xB5B5B5B5u,0xB6B6B6B6u,0xB7B7B7B7u, 0xB8B8B8B8u,0xB9B9B9B9u,0xBABABABAu,0xBBBBBBBBu,0xBCBCBCBCu,0xBDBDBDBDu,0xBEBEBEBEu,0xBFBFBFBFu, 0xC0C0C0C0u,0xC1C1C1C1u,0xC2C2C2C2u,0xC3C3C3C3u,0xC4C4C4C4u,0xC5C5C5C5u,0xC6C6C6C6u,0xC7C7C7C7u, 0xC8C8C8C8u,0xC9C9C9C9u,0xCACACACAu,0xCBCBCBCBu,0xCCCCCCCCu,0xCDCDCDCDu,0xCECECECEu,0xCFCFCFCFu, 0xD0D0D0D0u,0xD1D1D1D1u,0xD2D2D2D2u,0xD3D3D3D3u,0xD4D4D4D4u,0xD5D5D5D5u,0xD6D6D6D6u,0xD7D7D7D7u, 0xD8D8D8D8u,0xD9D9D9D9u,0xDADADADAu,0xDBDBDBDBu,0xDCDCDCDCu,0xDDDDDDDDu,0xDEDEDEDEu,0xDFDFDFDFu, 0xE0E0E0E0u,0xE1E1E1E1u,0xE2E2E2E2u,0xE3E3E3E3u,0xE4E4E4E4u,0xE5E5E5E5u,0xE6E6E6E6u,0xE7E7E7E7u, 0xE8E8E8E8u,0xE9E9E9E9u,0xEAEAEAEAu,0xEBEBEBEBu,0xECECECECu,0xEDEDEDEDu,0xEEEEEEEEu,0xEFEFEFEFu, 0xF0F0F0F0u,0xF1F1F1F1u,0xF2F2F2F2u,0xF3F3F3F3u,0xF4F4F4F4u,0xF5F5F5F5u,0xF6F6F6F6u,0xF7F7F7F7u, 0xF8F8F8F8u,0xF9F9F9F9u,0xFAFAFAFAu,0xFBFBFBFBu,0xFCFCFCFCu,0xFDFDFDFDu,0xFEFEFEFEu,0xFFFFFFFFu, }; return (int)word[narrow_cast(hash)]; } inline static unsigned char reduced_hash(std::size_t hash) { return narrow_cast(match_word(hash)); } inline std::atomic_uchar& at(std::size_t pos) { return m[pos]; } inline const std::atomic_uchar& at(std::size_t pos)const { return m[pos]; } inline std::atomic_uchar& overflow() { return at(N); } inline const std::atomic_uchar& overflow()const { return at(N); } alignas(16) std::atomic_uchar m[16]; }; #elif defined(BOOST_UNORDERED_LITTLE_ENDIAN_NEON) static_assert(sizeof(std::atomic)==1); struct group15 { static constexpr int N=15; struct dummy_group_type { alignas(16) unsigned char storage[N+1]={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; }; inline void initialize() { vst1q_u8(reinterpret_cast(m),vdupq_n_s8(0)); } bool occupied(std::size_t pos)const { BOOST_ASSERT(pos(pc)-> store(available_,std::memory_order_release); } inline int match(std::size_t hash)const { return simde_mm_movemask_epi8(vceqq_s8( vld1q_u8(reinterpret_cast(m)), vdupq_n_s8(reduced_hash(hash))))&0x7FFF; } inline bool is_not_overflowed(std::size_t hash)const { static constexpr unsigned char shift[]={1,2,4,8,16,32,64,128}; return !(overflow().load(std::memory_order_acquire)&shift[hash%8]); } inline void mark_overflow(std::size_t hash) { overflow().fetch_or( static_cast(1<<(hash%8)),std::memory_order_release); } static inline bool maybe_caused_overflow(unsigned char* pc) { std::size_t pos=reinterpret_cast(pc)%sizeof(group15); group15 *pg=reinterpret_cast(pc-pos); return !pg->is_not_overflowed(*pc); }; inline int match_available()const { return simde_mm_movemask_epi8(vceqq_s8( vld1q_u8(reinterpret_cast(m)), vdupq_n_s8(0)))&0x7FFF; } inline int match_occupied()const { return simde_mm_movemask_epi8(vcgtq_u8( vreinterpretq_u8_s8(vld1q_u8(reinterpret_cast(m))), vdupq_n_u8(0)))&0x7FFF; } private: static constexpr unsigned char available_=0, sentinel_=1; inline static unsigned char reduced_hash(std::size_t hash) { static constexpr unsigned char table[]={ 8,9,2,3,4,5,6,7,8,9,10,11,12,13,14,15, 16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31, 32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47, 48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63, 64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79, 80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95, 96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111, 112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127, 128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143, 144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159, 160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175, 176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191, 192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207, 208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223, 224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239, 240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255, }; return table[(unsigned char)hash]; } /* Copied from * https://github.com/simd-everywhere/simde/blob/master/simde/x86/sse2.h#L3763 */ static inline int simde_mm_movemask_epi8(uint8x16_t a) { static constexpr uint8_t md[16]={ 1 << 0, 1 << 1, 1 << 2, 1 << 3, 1 << 4, 1 << 5, 1 << 6, 1 << 7, 1 << 0, 1 << 1, 1 << 2, 1 << 3, 1 << 4, 1 << 5, 1 << 6, 1 << 7, }; uint8x16_t masked=vandq_u8(vld1q_u8(md),a); uint8x8x2_t tmp=vzip_u8(vget_low_u8(masked),vget_high_u8(masked)); uint16x8_t x=vreinterpretq_u16_u8(vcombine_u8(tmp.val[0],tmp.val[1])); #if defined(__ARM_ARCH_ISA_A64) return vaddvq_u16(x); #else uint64x2_t t64=vpaddlq_u32(vpaddlq_u16(x)); return int(vgetq_lane_u64(t64,0))+int(vgetq_lane_u64(t64,1)); #endif } inline std::atomic_uchar& at(std::size_t pos) { return m[pos]; } inline const std::atomic_uchar& at(std::size_t pos)const { return m[pos]; } inline std::atomic_uchar& overflow() { return at(N); } inline const std::atomic_uchar& overflow()const { return at(N); } alignas(16) std::atomic_uchar m[16]; }; #else /* non-SIMD */ static_assert(sizeof(std::atomic_uint64_t)==8); struct group15 { static constexpr int N=15; struct dummy_group_type { alignas(16) boost::uint64_t m[2]= {0x0000000000000000ull,0x0000000000000000ull}; }; inline void initialize(){m[0]=0;m[1]=0;} inline bool occupied(std::size_t pos) { boost::uint64_t x= m[0].load(std::memory_order_acquire)| m[1].load(std::memory_order_acquire); return (x&(0x0001000100010001ull<(pc)%sizeof(group15); pc-=pos; reinterpret_cast(pc)->reset(pos); } inline int match(std::size_t hash)const { return match_impl(reduced_hash(hash)); } inline bool is_not_overflowed(std::size_t hash)const { // TODO: should be do an atomic load? return !(reinterpret_cast(m)[hash%8] & 0x8000u); } inline void mark_overflow(std::size_t hash) { // TODO: should be do an atomic load? reinterpret_cast(m)[hash%8]|=0x8000u; } static inline bool maybe_caused_overflow(unsigned char* pc) { std::size_t pos=reinterpret_cast(pc)%sizeof(group15); group15 *pg=reinterpret_cast(pc-pos); boost::uint64_t x=(pg->m[0].load(std::memory_order_acquire)>>pos)& 0x000100010001ull; boost::uint32_t y=narrow_cast(x|(x>>15)|(x>>30)); return !pg->is_not_overflowed(y); }; inline int match_available()const { boost::uint64_t x=~(m[0].load(std::memory_order_relaxed)| m[1].load(std::memory_order_relaxed)); boost::uint32_t y=static_cast(x&(x>>32)); y&=y>>16; return y&0x7FFF; } inline int match_occupied()const { boost::uint64_t x=m[0].load(std::memory_order_relaxed)| m[1].load(std::memory_order_relaxed); boost::uint32_t y=narrow_cast(x|(x>>32)); y|=y>>16; return y&0x7FFF; } inline int match_really_occupied()const /* excluding sentinel */ { return ~(match_impl(0)|match_impl(1))&0x7FFF; } private: static constexpr unsigned char available_=0, sentinel_=1; inline static unsigned char reduced_hash(std::size_t hash) { static constexpr unsigned char table[]={ 8,9,2,3,4,5,6,7,8,9,10,11,12,13,14,15, 16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31, 32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47, 48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63, 64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79, 80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95, 96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111, 112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127, 128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143, 144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159, 160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175, 176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191, 192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207, 208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223, 224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239, 240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255, }; return table[narrow_cast(hash)]; } inline void set_impl(std::size_t pos,std::size_t n) { BOOST_ASSERT(n<256); set_impl(m[0],pos,n&0xFu); set_impl(m[1],pos,n>>4); } static inline void set_impl( std::atomic_uint64_t& x,std::size_t pos,std::size_t n) { static constexpr boost::uint64_t mask[]= { 0x0000000000000000ull,0x0000000000000001ull,0x0000000000010000ull, 0x0000000000010001ull,0x0000000100000000ull,0x0000000100000001ull, 0x0000000100010000ull,0x0000000100010001ull,0x0001000000000000ull, 0x0001000000000001ull,0x0001000000010000ull,0x0001000000010001ull, 0x0001000100000000ull,0x0001000100000001ull,0x0001000100010000ull, 0x0001000100010001ull, }; static constexpr boost::uint64_t imask[]= { 0x0001000100010001ull,0x0001000100010000ull,0x0001000100000001ull, 0x0001000100000000ull,0x0001000000010001ull,0x0001000000010000ull, 0x0001000000000001ull,0x0001000000000000ull,0x0000000100010001ull, 0x0000000100010000ull,0x0000000100000001ull,0x0000000100000000ull, 0x0000000000010001ull,0x0000000000010000ull,0x0000000000000001ull, 0x0000000000000000ull, }; BOOST_ASSERT(pos<16&&n<16); x.fetch_or(mask[n]<>4])|x); boost::uint32_t y=static_cast(x&(x>>32)); y&=y>>16; return y&0x7FFF; } alignas(16) std::atomic_uint64_t m[2]; }; #endif /* foa::table uses a size policy to obtain the permissible sizes of the group * array (and, by implication, the element array) and to do the hash->group * mapping. * * - size_index(n) returns an unspecified "index" number used in other policy * operations. * - size(size_index_) returns the number of groups for the given index. It is * guaranteed that size(size_index(n)) >= n. * - min_size() is the minimum number of groups permissible, i.e. * size(size_index(0)). * - position(hash,size_index_) maps hash to a position in the range * [0,size(size_index_)). * * The reason we're introducing the intermediate index value for calculating * sizes and positions is that it allows us to optimize the implementation of * position, which is in the hot path of lookup and insertion operations: * pow2_size_policy, the actual size policy used by foa::table, returns 2^n * (n>0) as permissible sizes and returns the n most significant bits * of the hash value as the position in the group array; using a size index * defined as i = (bits in std::size_t) - n, we have an unbeatable * implementation of position(hash) as hash>>i. * There's a twofold reason for choosing the high bits of hash for positioning: * - Multiplication-based mixing tends to yield better entropy in the high * part of its result. * - group15 reduced-hash values take the *low* bits of hash, and we want * these values and positioning to be as uncorrelated as possible. */ struct pow2_size_policy { static inline std::size_t size_index(std::size_t n) { // TODO: min size is 2, see if we can bring it down to 1 without loss // of performance return sizeof(std::size_t)*CHAR_BIT- (n<=2?1:((std::size_t)(boost::core::bit_width(n-1)))); } static inline std::size_t size(std::size_t size_index_) { return std::size_t(1)<<(sizeof(std::size_t)*CHAR_BIT-size_index_); } static constexpr std::size_t min_size(){return 2;} static inline std::size_t position(std::size_t hash,std::size_t size_index_) { return hash>>size_index_; } }; /* size index of a group array for a given *element* capacity */ template static inline std::size_t size_index_for(std::size_t n) { /* n/N+1 == ceil((n+1)/N) (extra +1 for the sentinel) */ return SizePolicy::size_index(n/Group::N+1); } /* Quadratic prober over a power-of-two range using triangular numbers. * mask in next(mask) must be the range size minus one (and since size is 2^n, * mask has exactly its n first bits set to 1). */ struct pow2_quadratic_prober { pow2_quadratic_prober(std::size_t pos_):pos{pos_}{} inline std::size_t get()const{return pos;} /* next returns false when the whole array has been traversed, which ends * probing (in practice, full-table probing will only happen with very small * arrays). */ inline bool next(std::size_t mask) { step+=1; pos=(pos+step)&mask; return step<=mask; } private: std::size_t pos,step=0; }; /* Mixing policies: no_mix is the identity function and xmx_mix uses the * xmx function defined in . * foa::table mixes hash results with xmx_mix unless the hash is marked as * avalanching, i.e. of good quality (see ). */ struct no_mix { template static inline std::size_t mix(const Hash& h,const T& x) { return h(x); } }; struct xmx_mix { template static inline std::size_t mix(const Hash& h,const T& x) { return xmx(h(x)); } }; /* boost::core::countr_zero has a potentially costly check for * the case x==0. */ inline unsigned int unchecked_countr_zero(int x) { #if defined(BOOST_MSVC) unsigned long r; _BitScanForward(&r,(unsigned long)x); return (unsigned int)r; #else BOOST_UNORDERED_ASSUME(x!=0); return (unsigned int)boost::core::countr_zero((unsigned int)x); #endif } template class table; /* table_iterator keeps two pointers: * * - A pointer p to the element slot. * - A pointer pc to the n-th byte of the associated group metadata, where n * is the position of the element in the group. * * A simpler solution would have been to keep a pointer p to the element, a * pointer pg to the group, and the position n, but that would increase * sizeof(table_iterator) by 4/8 bytes. In order to make this compact * representation feasible, it is required that group objects are aligned * to their size, so that we can recover pg and n as * * - n = pc%sizeof(group) * - pg = pc-n * * (for explanatory purposes pg and pc are treated above as if they were memory * addresses rather than pointers).The main drawback of this two-pointer * representation is that iterator increment is relatively slow. * * p = nullptr is conventionally used to mark end() iterators. * * TypePolicy encodes the element type and the actual value_type, which are * different for node containers. See below for a full explanation of type * policies. */ /* internal conversion from const_iterator to iterator */ class const_iterator_cast_tag {}; template class table_iterator { using type_policy=TypePolicy; /* "element_type" is taken by the homonym pointer trait */ using table_element_type=typename type_policy::element_type; public: using difference_type=std::ptrdiff_t; using value_type=typename type_policy::value_type; using pointer= typename std::conditional::type; using reference= typename std::conditional::type; using iterator_category=std::forward_iterator_tag; using element_type= typename std::conditional::type; table_iterator()=default; template::type* =nullptr> table_iterator(const table_iterator& x): pc{x.pc},p{x.p}{} table_iterator( const_iterator_cast_tag, const table_iterator& x): pc{x.pc},p{x.p}{} inline reference operator*()const noexcept {return type_policy::value_from(*p);} inline pointer operator->()const noexcept {return std::addressof(type_policy::value_from(*p));} inline table_iterator& operator++()noexcept{increment();return *this;} inline table_iterator operator++(int)noexcept {auto x=*this;increment();return x;} friend inline bool operator==( const table_iterator& x,const table_iterator& y) {return x.p==y.p;} friend inline bool operator!=( const table_iterator& x,const table_iterator& y) {return !(x==y);} private: template friend class table_iterator; template friend class table; table_iterator(Group* pg,std::size_t n,const table_element_type* p_): pc{reinterpret_cast(const_cast(pg))+n}, p{const_cast(p_)} {} inline std::size_t rebase() noexcept { std::size_t off=reinterpret_cast(pc)%sizeof(Group); pc-=off; return off; } inline void increment()noexcept { std::size_t n0=rebase(); int mask=(reinterpret_cast(pc)->match_occupied()>>(n0+1))<<(n0+1); if(!mask){ do{ pc+=sizeof(Group); p+=Group::N; } while((mask=reinterpret_cast(pc)->match_occupied())==0); } auto n=unchecked_countr_zero(mask); if(BOOST_UNLIKELY(reinterpret_cast(pc)->is_sentinel(n))){ p=nullptr; } else{ pc+=n; p-=n0; p+=n; } } unsigned char *pc=nullptr; table_element_type *p=nullptr; }; /* table_arrays controls allocation, initialization and deallocation of * paired arrays of groups and element slots. Only one chunk of memory is * allocated to place both arrays: this is not done for efficiency reasons, * but in order to be able to properly align the group array without storing * additional offset information --the alignment required (16B) is usually * greater than alignof(std::max_align_t) and thus not guaranteed by * allocators. */ template Group* dummy_groups() { /* Dummy storage initialized as if in an empty container (actually, each * of its groups is initialized like a separate empty container). * We make table_arrays::groups point to this when capacity()==0, so that * we are not allocating any dynamic memory and yet lookup can be implemented * without checking for groups==nullptr. This space won't ever be used for * insertion as the container's capacity is precisely zero. */ static constexpr typename Group::dummy_group_type storage[Size]={typename Group::dummy_group_type(),}; return reinterpret_cast( const_cast(storage)); } template struct table_arrays { using element_type=Element; using group_type=protected_group; static constexpr auto N=group_type::N; using size_policy=SizePolicy; template static table_arrays new_(Allocator& al,std::size_t n) { using alloc_traits=boost::allocator_traits; auto groups_size_index=size_index_for(n); auto groups_size=size_policy::size(groups_size_index); #ifdef CFOA_EMBEDDED_GROUP_ACCESS table_arrays arrays{groups_size_index,groups_size-1,nullptr,nullptr}; #else table_arrays arrays{groups_size_index,groups_size-1,nullptr,nullptr,nullptr}; #endif if(!n){ arrays.groups=dummy_groups(); } else{ arrays.elements= boost::to_address(alloc_traits::allocate(al,buffer_size(groups_size))); /* Align arrays.groups to sizeof(group_type). table_iterator critically * depends on such alignment for its increment operation. */ auto p=reinterpret_cast(arrays.elements+groups_size*N/*-1*/); // WATCH OUT NO SENTINEL p+=(uintptr_t(sizeof(group_type))- reinterpret_cast(p))%sizeof(group_type); arrays.groups=reinterpret_cast(p); /* memset is faster/not slower than initializing groups individually. * This assumes all zeros is group_type's default layout. */ std::memset(arrays.groups,0,sizeof(group_type)*groups_size); #ifndef CFOA_EMBEDDED_GROUP_ACCESS using group_access_allocator_type= allocator_rebind_t; group_access_allocator_type aal=al; arrays.group_accesses= boost::allocator_traits::allocate( aal,groups_size); for(std::size_t n=0;n::construct( aal,arrays.group_accesses+n); } #endif } return arrays; } template static void delete_(Allocator& al,table_arrays& arrays)noexcept { using alloc_traits=boost::allocator_traits; using pointer=typename alloc_traits::pointer; using pointer_traits=boost::pointer_traits; if(arrays.elements){ alloc_traits::deallocate( al,pointer_traits::pointer_to(*arrays.elements), buffer_size(arrays.groups_size_mask+1)); #ifndef CFOA_EMBEDDED_GROUP_ACCESS using group_access_allocator_type= allocator_rebind_t; group_access_allocator_type aal=al; for(std::size_t n=0;n::destroy( aal,arrays.group_accesses+n); } boost::allocator_traits::deallocate( aal,arrays.group_accesses,arrays.groups_size_mask+1); #endif } } /* Combined space for elements and groups measured in * sizeof(element_type)s. */ static std::size_t buffer_size(std::size_t groups_size) { auto buffer_bytes= /* space for elements (we subtract 1 because of the sentinel) */ sizeof(element_type)*(groups_size*N/*-1*/)+ // WATCH OUT NO SENTINEL /* space for groups + padding for group alignment */ sizeof(group_type)*(groups_size+1)-1; /* ceil(buffer_bytes/sizeof(element_type)) */ return (buffer_bytes+sizeof(element_type)-1)/sizeof(element_type); } std::size_t groups_size_index; std::size_t groups_size_mask; group_type *groups; element_type *elements; #ifndef CFOA_EMBEDDED_GROUP_ACCESS group_access *group_accesses; #endif }; struct if_constexpr_void_else{void operator()()const{}}; template void if_constexpr(F f,G g={}) { std::get(std::forward_as_tuple(f,g))(); } template::type* =nullptr> void copy_assign_if(T& x,const T& y){x=y;} template::type* =nullptr> void copy_assign_if(T&,const T&){} template::type* =nullptr> void move_assign_if(T& x,T& y){x=std::move(y);} template::type* =nullptr> void move_assign_if(T&,T&){} template::type* =nullptr> void swap_if(T& x,T& y){using std::swap; swap(x,y);} template::type* =nullptr> void swap_if(T&,T&){} inline void prefetch(const void* p) { (void) p; #if defined(BOOST_GCC)||defined(BOOST_CLANG) __builtin_prefetch((const char*)p); #elif defined(BOOST_UNORDERED_SSE2) _mm_prefetch((const char*)p,_MM_HINT_T0); #endif } struct try_emplace_args_t{}; template struct is_std_allocator:std::false_type{}; template struct is_std_allocator>:std::true_type{}; /* std::allocator::construct marked as deprecated */ #if defined(_LIBCPP_SUPPRESS_DEPRECATED_PUSH) _LIBCPP_SUPPRESS_DEPRECATED_PUSH #elif defined(_STL_DISABLE_DEPRECATED_WARNING) _STL_DISABLE_DEPRECATED_WARNING #elif defined(_MSC_VER) #pragma warning(push) #pragma warning(disable:4996) #endif template struct alloc_has_construct { private: template static decltype( std::declval().construct( std::declval(),std::declval()...), std::true_type{} ) check(int); template static std::false_type check(...); public: static constexpr bool value=decltype(check(0))::value; }; template void swap_atomic(std::atomic& x,std::atomic& y) { auto z=x; x=y; y=z; } #if defined(_LIBCPP_SUPPRESS_DEPRECATED_POP) _LIBCPP_SUPPRESS_DEPRECATED_POP #elif defined(_STL_RESTORE_DEPRECATED_WARNING) _STL_RESTORE_DEPRECATED_WARNING #elif defined(_MSC_VER) #pragma warning(pop) #endif #if defined(BOOST_GCC) /* GCC's -Wshadow triggers at scenarios like this: * * struct foo{}; * template * struct derived:Base * { * void f(){int foo;} * }; * * derivedx; * x.f(); // declaration of "foo" in derived::f shadows base type "foo" * * This makes shadowing warnings unavoidable in general when a class template * derives from user-provided classes, as is the case with table and * empty_value's below. */ #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wshadow" #endif #if defined(BOOST_MSVC) #pragma warning(push) #pragma warning(disable:4714) /* marked as __forceinline not inlined */ #endif #if BOOST_WORKAROUND(BOOST_MSVC,<=1900) /* VS2015 marks as unreachable generic catch clauses around non-throwing * code. */ #pragma warning(push) #pragma warning(disable:4702) #endif /* foa::table interface departs in a number of ways from that of C++ unordered * associative containers because it's not for end-user consumption * (boost::unordered_[flat|node]_[map|set] wrappers complete it as appropriate) * and, more importantly, because of fundamental restrictions imposed by open * addressing: * * - value_type must be moveable (flat containers). * - Pointer stability is not kept under rehashing (flat containers). * - begin() is not O(1). * - No bucket API. * - Load factor is fixed and can't be set by the user. * - No extract API (implemented externally by wrapping node containers). * * The TypePolicy template parameter is used to generate instantiations * suitable for each container, and introduces API-public, non-standard * init_type: * * - TypePolicy::key_type and TypePolicy::value_type have the obvious * meaning. * - TypePolicy::init_type is the type implicitly converted to when * writing x.insert({...}). For maps, this is std::pair rather * than std::pair so that, for instance, x.insert({"hello",0}) * produces a cheaply moveable std::string&& ("hello") rather than * a copyable const std::string&&. foa::table::insert is extended to accept * both init_type and value_type references. * - element_type is the type actually stored in buckets --value_type for * flat containers and (something equivalent to) value_type* for node * containers. * - TypePolicy::value_from returns a reference to the value_type contained * in an element_type object; for flat containers, this is the identity, * whereas node containers dereference the stored pointer. * - TypePolicy::move(element_type&) returns a temporary object for value * transfer on rehashing, move copy/assignment, and merge. In general * this resolves to std::move, except for flat maps, where the object * returned is a std::pair, which is generally cheaper to move * than std::pair&& because of the constness in Key. * - TypePolicy::construct(Allocator&,element_type*,Args&&...), where * Allocator::value_type is value_type, constructs an element from the * given arguments. For flat containers, this resolves to * std::allocator_traits::construct, whereas node containers * additionally do node allocation and/or transfer as appropriate. * - TypePolicy::destroy(Allocator&,element_type*) is the destroying * counterpart of the above. * - TypePolicy::extract returns a const reference to the key part of a const * reference to value_type, init_type, element_type or * decltype(TypePolicy::move(...)). * * try_emplace, erase and find support heterogenous lookup by default, that * is, without checking for any ::is_transparent typedefs --the checking is * done by boost::unordered_[flat|node]_[map|set]. * * At the moment, we're not supporting allocators with fancy pointers. * Allocator::pointer must be convertible to/from regular pointers. */ /* We pull this out so the tests don't have to rely on a magic constant or * instantiate the table class template as it can be quite gory. */ constexpr static float const mlf = 0.875f; template< typename TypePolicy,typename Hash,typename Pred,typename Allocator, typename Mutex=rw_spinlock > class #if defined(_MSC_VER)&&_MSC_FULL_VER>=190023918 __declspec(empty_bases) /* activate EBO with multiple inheritance */ #endif table:empty_value,empty_value,empty_value { using hash_base=empty_value; using pred_base=empty_value; using allocator_base=empty_value; using type_policy=TypePolicy; using group_type=group15; static constexpr auto N=group_type::N; using size_policy=pow2_size_policy; using prober=pow2_quadratic_prober; using mix_policy=typename std::conditional< hash_is_avalanching::value, no_mix, xmx_mix >::type; using alloc_traits=boost::allocator_traits; public: using key_type=typename type_policy::key_type; using init_type=typename type_policy::init_type; using value_type=typename type_policy::value_type; private: static constexpr bool has_mutable_iterator= !std::is_same::value; public: using hasher=Hash; using key_equal=Pred; using allocator_type=Allocator; using pointer=value_type*; using const_pointer=const value_type*; using reference=value_type&; using const_reference=const value_type&; using size_type=std::size_t; using difference_type=std::ptrdiff_t; using const_iterator=table_iterator; using iterator=typename std::conditional< has_mutable_iterator, table_iterator, const_iterator>::type; table( std::size_t n=1000,const Hash& h_=Hash(),const Pred& pred_=Pred(), const Allocator& al_=Allocator()): hash_base{empty_init,h_},pred_base{empty_init,pred_}, allocator_base{empty_init,al_},size_{0},arrays(new_arrays(n)), ml{initial_max_load()} {} table(const table& x): table{x,alloc_traits::select_on_container_copy_construction(x.al())}{} table(table&& x) noexcept( std::is_nothrow_move_constructible::value&& std::is_nothrow_move_constructible::value&& std::is_nothrow_move_constructible::value): hash_base{empty_init,std::move(x.h())}, pred_base{empty_init,std::move(x.pred())}, allocator_base{empty_init,std::move(x.al())}, size_{x.size_},arrays(x.arrays),ml{x.ml} { x.size_=0; x.arrays=x.new_arrays(0); x.ml=x.initial_max_load(); } table(const table& x,const Allocator& al_): table{std::size_t(std::ceil(float(x.size())/mlf)),x.h(),x.pred(),al_} { copy_elements_from(x); } table(table&& x,const Allocator& al_): table{0,std::move(x.h()),std::move(x.pred()),al_} { if(al()==x.al()){ swap_atomic(size_,x.size_); std::swap(arrays,x.arrays); swap_atomic(ml,x.ml); } else{ reserve(x.size()); clear_on_exit c{x}; (void)c; /* unused var warning */ /* This works because subsequent x.clear() does not depend on the * elements' values. */ x.for_all_elements([this](element_type* p){ unchecked_insert(type_policy::move(*p)); }); } } ~table()noexcept { for_all_elements([this](element_type* p){ destroy_element(p); }); delete_arrays(arrays); } table& operator=(const table& x) { BOOST_UNORDERED_STATIC_ASSERT_HASH_PRED(Hash, Pred) static constexpr auto pocca= alloc_traits::propagate_on_container_copy_assignment::value; if(this!=std::addressof(x)){ // if copy construction here winds up throwing, the container is still // left intact so we perform these operations first hasher tmp_h=x.h(); key_equal tmp_p=x.pred(); // already noexcept, clear() before we swap the Hash, Pred just in case // the clear() impl relies on them at some point in the future clear(); // because we've asserted at compile-time that Hash and Pred are nothrow // swappable, we can safely mutate our source container and maintain // consistency between the Hash, Pred compatibility using std::swap; swap(h(),tmp_h); swap(pred(),tmp_p); if_constexpr([&,this]{ if(al()!=x.al())reserve(0); copy_assign_if(al(),x.al()); }); /* noshrink: favor memory reuse over tightness */ noshrink_reserve(x.size()); copy_elements_from(x); } return *this; } #if defined(BOOST_MSVC) #pragma warning(push) #pragma warning(disable:4127) /* conditional expression is constant */ #endif table& operator=(table&& x) noexcept( alloc_traits::propagate_on_container_move_assignment::value|| alloc_traits::is_always_equal::value) { BOOST_UNORDERED_STATIC_ASSERT_HASH_PRED(Hash, Pred) static constexpr auto pocma= alloc_traits::propagate_on_container_move_assignment::value; if(this!=std::addressof(x)){ /* Given ambiguity in implementation strategies briefly discussed here: * https://www.open-std.org/jtc1/sc22/wg21/docs/lwg-active.html#2227 * * we opt into requiring nothrow swappability and eschew the move * operations associated with Hash, Pred. * * To this end, we ensure that the user never has to consider the * moved-from state of their Hash, Pred objects */ using std::swap; clear(); swap(h(),x.h()); swap(pred(),x.pred()); if(pocma||al()==x.al()){ reserve(0); move_assign_if(al(),x.al()); swap_atomic(size_,x.size_); swap(arrays,x.arrays); swap_atomic(ml,x.ml); } else{ /* noshrink: favor memory reuse over tightness */ noshrink_reserve(x.size()); clear_on_exit c{x}; (void)c; /* unused var warning */ /* This works because subsequent x.clear() does not depend on the * elements' values. */ x.for_all_elements([this](element_type* p){ unchecked_insert(type_policy::move(*p)); }); } } return *this; } #if defined(BOOST_MSVC) #pragma warning(pop) /* C4127 */ #endif allocator_type get_allocator()const noexcept{return al();} iterator begin()noexcept { iterator it{arrays.groups,0,arrays.elements}; if(!(arrays.groups[0].match_occupied()&0x1))++it; return it; } const_iterator begin()const noexcept {return const_cast(this)->begin();} iterator end()noexcept{return {};} const_iterator end()const noexcept{return const_cast(this)->end();} const_iterator cbegin()const noexcept{return begin();} const_iterator cend()const noexcept{return end();} bool empty()const noexcept{return size()==0;} std::size_t size()const noexcept{return size_;} std::size_t max_size()const noexcept{return SIZE_MAX;} template BOOST_FORCEINLINE std::pair emplace(Args&&... args) { using emplace_type = typename std::conditional< std::is_constructible< init_type, Args... >::value, init_type, value_type >::type; return emplace_impl(emplace_type(std::forward(args)...)); } template BOOST_FORCEINLINE void try_emplace(F f,Key&& x,Args&&... args) { for(;;){ std::size_t n; { auto lck=shared_access(); n=capacity(); if(emplace_impl( f,try_emplace_args_t{},std::forward(x),std::forward(args)...))return; } auto lck=exclusive_access(); if(capacity()<=n)rehash(n+1); } } BOOST_FORCEINLINE std::pair insert(const init_type& x){return emplace_impl(x);} BOOST_FORCEINLINE std::pair insert(init_type&& x){return emplace_impl(std::move(x));} /* template tilts call ambiguities in favor of init_type */ template BOOST_FORCEINLINE std::pair insert(const value_type& x){return emplace_impl(x);} template BOOST_FORCEINLINE std::pair insert(value_type&& x){return emplace_impl(std::move(x));} template< bool dependent_value=false, typename std::enable_if< has_mutable_iterator||dependent_value>::type* =nullptr > void erase(iterator pos)noexcept{return erase(const_iterator(pos));} BOOST_FORCEINLINE void erase(const_iterator pos)noexcept { destroy_element(pos.p); recover_slot(pos.pc); } template BOOST_FORCEINLINE auto erase(Key&& x) -> typename std::enable_if< !std::is_convertible::value&& !std::is_convertible::value, std::size_t>::type { auto it=find(x); if(it!=end()){ erase(it); return 1; } else return 0; } void swap(table& x) noexcept( alloc_traits::propagate_on_container_swap::value|| alloc_traits::is_always_equal::value) { BOOST_UNORDERED_STATIC_ASSERT_HASH_PRED(Hash, Pred) static constexpr auto pocs= alloc_traits::propagate_on_container_swap::value; using std::swap; if_constexpr([&,this]{ swap_if(al(),x.al()); }, [&,this]{ /* else */ BOOST_ASSERT(al()==x.al()); (void)this; /* makes sure captured this is used */ }); swap(h(),x.h()); swap(pred(),x.pred()); swap_atomic(size_,x.size_); swap(arrays,x.arrays); swap_atomic(ml,x.ml); } void clear()noexcept { auto p=arrays.elements; if(p){ for(auto pg=arrays.groups,last=pg+arrays.groups_size_mask+1; pg!=last;++pg,p+=N){ auto mask=pg->match_really_occupied(); while(mask){ destroy_element(p+unchecked_countr_zero(mask)); mask&=mask-1; } /* we wipe the entire metadata to reset the overflow byte as well */ pg->initialize(); } arrays.groups[arrays.groups_size_mask].set_sentinel(); size_=0; ml=initial_max_load(); } } // TODO: should we accept different allocator too? template void merge(table& x) { x.for_all_elements([&,this](group_type* pg,unsigned int n,element_type* p){ if(emplace_impl(type_policy::move(*p)).second){ x.erase(iterator{pg,n,p}); } }); } template void merge(table&& x){merge(x);} hasher hash_function()const{return h();} key_equal key_eq()const{return pred();} template BOOST_FORCEINLINE bool find(const Key& x,F f) { auto lck=shared_access(); auto hash=hash_for(x); return find_impl(x,f,position_for(hash),hash); } template BOOST_FORCEINLINE bool find(const Key& x,F f)const { return const_cast(this)->find(x,f); } std::size_t capacity()const noexcept { return arrays.elements?(arrays.groups_size_mask+1)*N-1:0; } float load_factor()const noexcept { if (capacity() == 0) { return 0; } return float(size())/float(capacity()); } float max_load_factor()const noexcept{return mlf;} std::size_t max_load()const noexcept{return ml;} void rehash(std::size_t n) { auto m=size_t(std::ceil(float(size())/mlf)); if(m>n)n=m; if(n)n=capacity_for(n); /* exact resulting capacity */ if(n!=capacity())unchecked_rehash(n); } void reserve(std::size_t n) { rehash(std::size_t(std::ceil(float(n)/mlf))); } template friend std::size_t erase_if(table& x,Predicate pr) { return x.erase_if_impl(pr); } private: template friend class table; using element_type=typename type_policy::element_type; using element_allocator_type=allocator_rebind_t; using arrays_type=table_arrays; struct clear_on_exit { ~clear_on_exit(){x.clear();} table& x; }; Hash& h(){return hash_base::get();} const Hash& h()const{return hash_base::get();} Pred& pred(){return pred_base::get();} const Pred& pred()const{return pred_base::get();} Allocator& al(){return allocator_base::get();} const Allocator& al()const{return allocator_base::get();} #ifdef CFOA_EMBEDDED_GROUP_ACCESS inline auto shared_access(std::size_t pos)const { return arrays.groups[pos].shared_access(); } inline auto exclusive_access(std::size_t pos)const { return arrays.groups[pos].exclusive_access(); } inline auto& counter(std::size_t pos)const { return arrays.groups[pos].counter(); } #else inline auto shared_access(std::size_t pos)const { return arrays.group_accesses[pos].shared_access(); } inline auto exclusive_access(std::size_t pos)const { return arrays.group_accesses[pos].exclusive_access(); } inline auto& counter(std::size_t pos)const { return arrays.group_accesses[pos].counter(); } #endif arrays_type new_arrays(std::size_t n) { element_allocator_type eal=al(); return arrays_type::new_(eal,n); } void delete_arrays(arrays_type& arrays_)noexcept { element_allocator_type eal=al(); arrays_type::delete_(eal,arrays_); } template void construct_element(element_type* p,Args&&... args) { type_policy::construct(al(),p,std::forward(args)...); } template void construct_element(element_type* p,try_emplace_args_t,Args&&... args) { construct_element_from_try_emplace_args( p, std::integral_constant::value>{}, std::forward(args)...); } template void construct_element_from_try_emplace_args( element_type* p,std::false_type,Key&& x,Args&&... args) { type_policy::construct( al(),p, std::piecewise_construct, std::forward_as_tuple(std::forward(x)), std::forward_as_tuple(std::forward(args)...)); } /* This overload allows boost::unordered_[flat|node]_set to internally use * try_emplace to implement heterogeneous insert (P2363). */ template void construct_element_from_try_emplace_args( element_type* p,std::true_type,Key&& x) { type_policy::construct(al(),p,std::forward(x)); } void destroy_element(element_type* p)noexcept { type_policy::destroy(al(),p); } struct destroy_element_on_exit { ~destroy_element_on_exit(){this_->destroy_element(p);} table *this_; element_type *p; }; void copy_elements_from(const table& x) { BOOST_ASSERT(empty()); BOOST_ASSERT(this!=std::addressof(x)); if(arrays.groups_size_mask==x.arrays.groups_size_mask){ fast_copy_elements_from(x); } else{ x.for_all_elements([this](const element_type* p){ unchecked_insert(*p); }); } } void fast_copy_elements_from(const table& x) { if(arrays.elements){ copy_elements_array_from(x); std::memcpy( arrays.groups,x.arrays.groups, (arrays.groups_size_mask+1)*sizeof(group_type)); size_=x.size(); } } void copy_elements_array_from(const table& x) { copy_elements_array_from( x, std::integral_constant< bool, std::is_same::value&& #if BOOST_WORKAROUND(BOOST_LIBSTDCXX_VERSION,<50000) /* std::is_trivially_copy_constructible not provided */ boost::has_trivial_copy::value #else std::is_trivially_copy_constructible::value #endif &&( is_std_allocator::value|| !alloc_has_construct::value) >{} ); } void copy_elements_array_from(const table& x,std::true_type /* -> memcpy */) { /* reinterpret_cast: GCC may complain about element_type not being * trivially copy-assignable when we're relying on trivial copy * constructibility. */ std::memcpy( reinterpret_cast(arrays.elements), reinterpret_cast(x.arrays.elements), x.capacity()*sizeof(element_type)); } void copy_elements_array_from(const table& x,std::false_type /* -> manual */) { std::size_t num_constructed=0; BOOST_TRY{ x.for_all_elements([&,this](const element_type* p){ construct_element(arrays.elements+(p-x.arrays.elements),*p); ++num_constructed; }); } BOOST_CATCH(...){ if(num_constructed){ x.for_all_elements_while([&,this](const element_type* p){ destroy_element(arrays.elements+(p-x.arrays.elements)); return --num_constructed!=0; }); } BOOST_RETHROW } BOOST_CATCH_END } void recover_slot(unsigned char* pc) { /* If this slot potentially caused overflow, we decrease the maximum load so * that average probe length won't increase unboundedly in repeated * insert/erase cycles (drift). */ ml-=group_type::maybe_caused_overflow(pc); group_type::reset(pc); --size_; } void recover_slot(group_type* pg,std::size_t pos) { recover_slot(reinterpret_cast(pg)+pos); } std::size_t initial_max_load()const { static constexpr std::size_t small_capacity=2*N-1; auto capacity_=capacity(); if(capacity_<=small_capacity){ return capacity_; /* we allow 100% usage */ } else{ return (std::size_t)(mlf*(float)(capacity_)); } } template static inline auto key_from(const T& x) ->decltype(type_policy::extract(x)) { return type_policy::extract(x); } template static inline const Key& key_from( try_emplace_args_t,const Key& x,const Args&...) { return x; } template inline std::size_t hash_for(const Key& x)const { return mix_policy::mix(h(),x); } inline std::size_t position_for(std::size_t hash)const { return position_for(hash,arrays); } static inline std::size_t position_for( std::size_t hash,const arrays_type& arrays_) { return size_policy::position(hash,arrays_.groups_size_index); } static inline void prefetch_elements(const element_type* p) { /* We have experimentally confirmed that ARM architectures get a higher * speedup when around the first half of the element slots in a group are * prefetched, whereas for Intel just the first cache line is best. * Please report back if you find better tunings for some particular * architectures. */ #if BOOST_ARCH_ARM /* Cache line size can't be known at compile time, so we settle on * the very frequent value of 64B. */ constexpr int cache_line=64; const char *p0=reinterpret_cast(p), *p1=p0+sizeof(element_type)*N/2; for(;p0 BOOST_FORCEINLINE bool find_impl( const Key& x,F f,std::size_t pos0,std::size_t hash)const { prober pb(pos0); do{ auto pos=pb.get(); auto pg=arrays.groups+pos; auto mask=pg->match(hash); if(mask){ auto p=arrays.elements+pos*N; prefetch_elements(p); auto lck=exclusive_access(pos); do{ auto n=unchecked_countr_zero(mask); if(BOOST_LIKELY(pg->occupied(n)&&bool(pred()(x,key_from(p[n]))))){ f(p[n]); return true; } mask&=mask-1; }while(mask); } if(BOOST_LIKELY(pg->is_not_overflowed(hash))){ return false; } } while(BOOST_LIKELY(pb.next(arrays.groups_size_mask))); return false; } #if defined(BOOST_MSVC) #pragma warning(pop) /* C4800 */ #endif template BOOST_FORCEINLINE bool emplace_impl(F f,Args&&... args) { const auto &k=key_from(std::forward(args)...); auto hash=hash_for(k); auto pos0=position_for(hash); for(;;){ startover:; boost::uint32_t group_counter=counter(pos0); if(find_impl( k,[&](value_type& x){f(x,false);},pos0,hash))return true; if(BOOST_LIKELY(size_match_available(); if(BOOST_LIKELY(mask!=0)){ auto lck=exclusive_access(pos); do{ auto n=unchecked_countr_zero(mask); if(BOOST_LIKELY(!pg->occupied(n))){ pg->set(n,hash); if(BOOST_UNLIKELY(counter(pos0)++!=group_counter)){ /* some other thread inserted from p0, need to start over */ pg->reset(n); goto startover; } auto p=arrays.elements+pos*N+n; construct_element(p,std::forward(args)...); ++size_; f(*p,true); return true; } mask&=mask-1; }while(mask); } pg->mark_overflow(hash); } } else return false; } } static std::size_t capacity_for(std::size_t n) { return size_policy::size(size_index_for(n))*N-1; } template BOOST_NOINLINE iterator unchecked_emplace_with_rehash(std::size_t hash,Args&&... args) { /* Due to the anti-drift mechanism (see recover_slot), new_arrays_ may be * of the same size as the old arrays; in the limit, erasing one element at * full load and then inserting could bring us back to the same capacity * after a costly rehash. To avoid this, we jump to the next capacity level * when the number of erased elements is <= 10% of total elements at full * load, which is implemented by requesting additional F*size elements, * with F = P * 10% / (1 - P * 10%), where P is the probability of an * element having caused overflow; P has been measured as ~0.162 under * ideal conditions, yielding F ~ 0.0165 ~ 1/61. */ auto new_arrays_=new_arrays(std::size_t( std::ceil(static_cast(size_+size_/61+1)/mlf))); iterator it; BOOST_TRY{ /* strong exception guarantee -> try insertion before rehash */ it=nosize_unchecked_emplace_at( new_arrays_,position_for(hash,new_arrays_), hash,std::forward(args)...); } BOOST_CATCH(...){ delete_arrays(new_arrays_); BOOST_RETHROW } BOOST_CATCH_END /* new_arrays_ lifetime taken care of by unchecked_rehash */ unchecked_rehash(new_arrays_); ++size_; return it; } BOOST_NOINLINE void unchecked_rehash(std::size_t n) { auto new_arrays_=new_arrays(n); unchecked_rehash(new_arrays_); } BOOST_NOINLINE void unchecked_rehash(arrays_type& new_arrays_) { std::size_t num_destroyed=0; BOOST_TRY{ for_all_elements([&,this](element_type* p){ nosize_transfer_element(p,new_arrays_,num_destroyed); }); } BOOST_CATCH(...){ if(num_destroyed){ for_all_elements_while( [&,this](group_type* pg,unsigned int n,element_type*){ recover_slot(pg,n); return --num_destroyed!=0; } ); } for_all_elements(new_arrays_,[this](element_type* p){ destroy_element(p); }); delete_arrays(new_arrays_); BOOST_RETHROW } BOOST_CATCH_END /* either all moved and destroyed or all copied */ BOOST_ASSERT(num_destroyed==size()||num_destroyed==0); if(num_destroyed!=size()){ for_all_elements([this](element_type* p){ destroy_element(p); }); } delete_arrays(arrays); arrays=new_arrays_; ml=initial_max_load(); } void noshrink_reserve(std::size_t n) { /* used only on assignment after element clearance */ BOOST_ASSERT(empty()); if(n){ n=std::size_t(std::ceil(float(n)/mlf)); /* elements -> slots */ n=capacity_for(n); /* exact resulting capacity */ if(n>capacity()){ auto new_arrays_=new_arrays(n); delete_arrays(arrays); arrays=new_arrays_; ml=initial_max_load(); } } } template void unchecked_insert(Element&& x) { auto hash=hash_for(key_from(x)); unchecked_emplace_at(position_for(hash),hash,std::forward(x)); } void nosize_transfer_element( element_type* p,const arrays_type& arrays_,std::size_t& num_destroyed) { using moved_element_type= decltype(type_policy::move(std::declval())); nosize_transfer_element( p,hash_for(key_from(*p)),arrays_,num_destroyed, std::integral_constant< /* std::move_if_noexcept semantics */ bool, /* Node containers: nothrow move-constructible checks to true even * though type_policy::construct is used in place of actual move ctor. */ std::is_nothrow_constructible::value|| !std::is_copy_constructible::value>{}); } void nosize_transfer_element( element_type* p,std::size_t hash,const arrays_type& arrays_, std::size_t& num_destroyed,std::true_type /* ->move */) { /* Destroy p even if an an exception is thrown in the middle of move * construction, which could leave the source half-moved. */ ++num_destroyed; destroy_element_on_exit d{this,p}; (void)d; /* unused var warning */ nosize_unchecked_emplace_at( arrays_,position_for(hash,arrays_),hash,type_policy::move(*p)); } void nosize_transfer_element( element_type* p,std::size_t hash,const arrays_type& arrays_, std::size_t& /*num_destroyed*/,std::false_type /* ->copy */) { nosize_unchecked_emplace_at( arrays_,position_for(hash,arrays_),hash, const_cast(*p)); } template iterator unchecked_emplace_at( std::size_t pos0,std::size_t hash,Args&&... args) { auto res=nosize_unchecked_emplace_at( arrays,pos0,hash,std::forward(args)...); ++size_; return res; } template iterator nosize_unchecked_emplace_at( const arrays_type& arrays_,std::size_t pos0,std::size_t hash, Args&&... args) { for(prober pb(pos0);;pb.next(arrays_.groups_size_mask)){ auto pos=pb.get(); auto pg=arrays_.groups+pos; for(;;){ auto mask=pg->match_available(); if(BOOST_UNLIKELY(mask==0))break; auto n=unchecked_countr_zero(mask); auto p=arrays_.elements+pos*N+n; construct_element(p,std::forward(args)...); pg->set(n,hash); return {pg,n,p}; } pg->mark_overflow(hash); } } template std::size_t erase_if_impl(Predicate pr) { std::size_t s=size(); for_all_elements([&,this](group_type* pg,unsigned int n,element_type* p){ if(pr(*p)) erase(iterator{pg,n,p}); }); return std::size_t(s-size()); } template void for_all_elements(F f)const { for_all_elements(arrays,f); } template static auto for_all_elements(const arrays_type& arrays_,F f) ->decltype(f(nullptr),void()) { for_all_elements_while(arrays_,[&](element_type* p){f(p);return true;}); } template static auto for_all_elements(const arrays_type& arrays_,F f) ->decltype(f(nullptr,0,nullptr),void()) { for_all_elements_while( arrays_,[&](group_type* pg,unsigned int n,element_type* p) {f(pg,n,p);return true;}); } template void for_all_elements_while(F f)const { for_all_elements_while(arrays,f); } template static auto for_all_elements_while(const arrays_type& arrays_,F f) ->decltype(f(nullptr),void()) { for_all_elements_while( arrays_,[&](group_type*,unsigned int,element_type* p){return f(p);}); } template static auto for_all_elements_while(const arrays_type& arrays_,F f) ->decltype(f(nullptr,0,nullptr),void()) { auto p=arrays_.elements; if(!p){return;} for(auto pg=arrays_.groups,last=pg+arrays_.groups_size_mask+1; pg!=last;++pg,p+=N){ auto mask=pg->match_occupied(); while(mask){ auto n=unchecked_countr_zero(mask); if(!f(pg,n,p+n))return; mask&=mask-1; } } } std::atomic size_; arrays_type arrays; std::atomic ml; using mutex_type=Mutex; static constexpr std::size_t num_mutexes=128; struct aligned_mutex { alignas(64) mutable mutex_type mtx; }; std::shared_lock shared_access()const { thread_local auto id=(++thread_counter)%num_mutexes; //thread_local auto id=std::hash()(std::this_thread::get_id())%num_mutexes; return std::shared_lock{mutexes[id].mtx}; } struct exclusive_access_struct { exclusive_access_struct(const aligned_mutex* mutexes_):mutexes{mutexes_} { for(int i=0;i0;)mutexes[--i].mtx.unlock(); } const aligned_mutex* mutexes; }; auto exclusive_access()const { return exclusive_access_struct(mutexes.data()); } mutable std::atomic_uint thread_counter=0; std::array mutexes; }; #if BOOST_WORKAROUND(BOOST_MSVC,<=1900) #pragma warning(pop) /* C4702 */ #endif #if defined(BOOST_MSVC) #pragma warning(pop) /* C4714 */ #endif #if defined(BOOST_GCC) #pragma GCC diagnostic pop /* ignored "-Wshadow" */ #endif } /* namespace cfoa */ } /* namespace detail */ } /* namespace unordered */ } /* namespace boost */ #undef BOOST_UNORDERED_ASSUME #undef BOOST_UNORDERED_HAS_BUILTIN #undef BOOST_UNORDERED_STATIC_ASSERT_HASH_PRED #ifdef BOOST_UNORDERED_LITTLE_ENDIAN_NEON #undef BOOST_UNORDERED_LITTLE_ENDIAN_NEON #endif #ifdef BOOST_UNORDERED_SSE2 #undef BOOST_UNORDERED_SSE2 #endif #endif