mfence is more expensive on most recent CPUs than a lock-prefixed instruction
on a dummy location, while the latter is sufficient to implement sequential
consistency on x86. Some performance test results are available here:
https://shipilev.net/blog/2014/on-the-fence-with-dependencies/
Also, for seq_cst stores in gcc_atomic backend, use an xchg instead of
mov+mfence, which are generated by gcc versions older than 10.1.
The machinery to detect mfence presence is still left intact just in case
if we need to use this instruction in the future.
Closes https://github.com/boostorg/atomic/issues/36.
The typedefs indicate the atomic object type for an unsigned/signed
integer that is lock-free and preferably has native support for waiting
and notifying operations.
The inter-process atomics have ipc_ prefixes: ipc_atomic, ipc_atomic_ref
and ipc_atomic_flag. These types are similar to their unprefixed counterparts
with the following distinctions:
- The operations are provided with an added precondition that is_lock_free()
returns true.
- All operations, including waiting/notifying operations, are address-free,
so the types are suitable for inter-process communication.
- The new has_native_wait_notify() operation and always_has_native_wait_notify
static constant allow to test if the target platform has native support for
address-free waiting/notifying operations. If it does not, a generic
implementation is used based on a busy wait.
- The new set of capability macros added. The macros are named
BOOST_ATOMIC_HAS_NATIVE_<T>_IPC_WAIT_NOTIFY and indicate whether address-free
waiting/notifying operations are supported natively for a given type.
Additionally, to unify interface and implementation of different components,
the has_native_wait_notify() operation and always_has_native_wait_notify
static constant were added to non-IPC atomic types as well. Added
BOOST_ATOMIC_HAS_NATIVE_<T>_WAIT_NOTIFY capability macros to indicate
native support for inter-thread waiting/notifying operations.
Also, added is_lock_free() and is_always_lock_free to atomic_flag.
This commit adds implementation, docs and tests.
The value() operation is useful with futexes, but should not be used for
anything else, basically.
The lack of support for types with padding bits is documented more prominently.
The docs do mention that `long double` on x86 is supported though.
Also, added description of the new tests added recently.
Related to https://github.com/boostorg/atomic/issues/34.
The user may define BOOST_ATOMIC_LOCK_POOL_SIZE_LOG2 macro to specify
binary logarithm of the size of the internal lock pool. The macro
only has effect when building Boost.Atomic.
The generic implementation is based on the lock pool. A list of condition
variables (or waiting futexes) is added per lock. Basically, the lock
pool serves as a global hash table, where each lock represents
a bucket and each wait state is an element. Every wait operation
allocates a wait state keyed on the pointer to the atomic object. Notify
operations look up the wait state by the atomic pointer and notify
the condition variable/futex. The corresponding lock needs to be acquired
to protect the wait state list during all wait/notify operations.
Backends not involving the lock pool are going to be added later.
The implementation of wait operation extends the C++20 definition in that
it returns the newly loaded value instead of void. This allows the caller
to avoid loading the value himself.
The waiting/notifying operations are not address-free. Address-free variants
will be added later.
Added tests for the new operations and refactored existing tests for atomic
operations. Added docs for the new operations.
The macro was used to highlight the (op)_and_test methods of atomic<>
that changed the returned value to the opposite in Boost 1.67. The old
behavior was only released in 1.66 and the macro was a means to help
1.66 users to transition to the new releases.
1.67 will have been released 2 years before the upcoming 1.73 release,
in which this macro will be removed.
We currently don't support structs with padding bits, so the checks
are useless. Also, updated docs so that users are not given the idea
that structs with padding bits are supported.
The support includes:
- The standard fetch_add/fetch_sub operations.
- Extra operations: (fetch_/opaque_)negate, (opaque_)add/sub.
- Extra capability macros: BOOST_ATOMIC_FLOAT/DOUBLE/LONG_DOUBLE_LOCK_FREE.
The atomic operations are currently implemented on top of the integer-based
backends and thus are mostly CAS-based. The CAS operations perform binary
comparisons, and as such have different behavior wrt. special FP values like
NaN and signed zero than normal C++.
The support for floating point types is optional and can be disabled by
defining BOOST_ATOMIC_NO_FLOATING_POINT. This can be useful if on a certain
platform parameters of the floating point types cannot be deduced from the
compiler-defined or system macros (in which case the compilation fails).
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0020r6.html
These operations are useful for two reasons. First, they are needed by
atomic<> interface as the pre-increment/decrement and add/subtract operators
need to perform the corresponding arithmetics and return the actual result while
not exhibiting UB in case of overflow. This means that the operation must be
performed on the unsigned storage type in the backend. Second, the (op)_and_test
operations on ARM and PowerPC can be implemented in a more generic way on top of
the operations that return the result. And since we have those operations
internally, why not expose them to users.
Added tests and docs for the new operations. Also, added docs for the recently
added scoped names of the memory_order enum values.
Also, added a specialized "emulated" backend for the extra operations. This
backend makes better use of the fact that the operations are lock-protected
by avoiding any CAS-based loops.
As the names suggest, the methods perform the corresponding operation and test
if the result is not zero.
Also, for the emulated fetch_complement, take care of integral promotion, which
could mess up the storage bits that were not part of the value on backends
where the storage is larger than the value. This could in turn break CAS on
the atomic value as it compares the whole storage.
This makes the result of (op)_and_test more consistent with other
methods such as test_and_set and bit_test_and_set, as well as the
methods used in the C++ standard library.
This is a breaking change. The users are able to define
BOOST_ATOMIC_HIGHLIGHT_OP_AND_TEST macro to generate warnings on each
use of the changed functions. This will help users to port from Boost
1.66 to newer Boost releases.
More info at:
https://github.com/boostorg/atomic/issues/11http://boost.2283326.n4.nabble.com/atomic-op-and-test-naming-
tc4701445.html
Also made a few wording corrections and added is_always_lock_free and
a section about atomic<> typedefs. Clarified the status quo regarding
memory_order_consume. Removed the obsolete preudo-header for doxygen
that was not used for docs (if we want doxygen, it's better to
add comments to the real headers anyway).