2
0
mirror of https://github.com/boostorg/asio.git synced 2026-01-28 18:52:09 +00:00
Files
asio/example/cpp03/timeouts/blocking_tcp_client.cpp
Christopher Kohlhoff 603397befb Merge from trunk.
------------------------------------------------------------------------
r84301 | chris_kohlhoff | 2013-05-17 07:34:54 +1000 (Fri, 17 May 2013) | 2 lines

Enable handler type requirements static_assert on clang.

------------------------------------------------------------------------
r84308 | chris_kohlhoff | 2013-05-17 09:26:04 +1000 (Fri, 17 May 2013) | 3 lines

Add new traits classes, handler_type and async_result, that allow
the customisation of the return type of an initiating function.

------------------------------------------------------------------------
r84311 | chris_kohlhoff | 2013-05-17 11:38:47 +1000 (Fri, 17 May 2013) | 81 lines

Add the asio::spawn() function, a high-level wrapper for running
stackful coroutines. It is based on the Boost.Coroutine library.

Here is an example of its use:

  asio::spawn(my_strand, do_echo);

  // ...

  void do_echo(asio::yield_context yield)
  {
    try
    {
      char data[128];
      for (;;)
      {
        std::size_t length =
          my_socket.async_read_some(
            asio::buffer(data), yield);

        asio::async_write(my_socket,
            asio::buffer(data, length), yield);
      }
    }
    catch (std::exception& e)
    {
      // ...
    }
  }

The first argument to asio::spawn() may be a strand, io_service or
completion handler. This argument determines the context in which the
coroutine is permitted to execute. For example, a server's per-client
object may consist of multiple coroutines; they should all run on the
same strand so that no explicit synchronisation is required.

The second argument is a function object with signature (**):

  void coroutine(asio::yield_context yield);

that specifies the code to be run as part of the coroutine. The
parameter yield may be passed to an asynchronous operation in place of
the completion handler, as in:

  std::size_t length =
    my_socket.async_read_some(
      asio::buffer(data), yield);

This starts the asynchronous operation and suspends the coroutine. The
coroutine will be resumed automatically when the asynchronous operation
completes.

Where a completion handler signature has the form:

  void handler(error_code ec, result_type result);

the initiating function returns the result_type. In the async_read_some
example above, this is std::size_t. If the asynchronous operation fails,
the error_code is converted into a system_error exception and thrown.

Where a completion handler signature has the form:

  void handler(error_code ec);

the initiating function returns void. As above, an error is passed back
to the coroutine as a system_error exception.

To collect the error_code from an operation, rather than have it throw
an exception, associate the output variable with the yield_context as
follows:

  error_code ec;
  std::size_t length =
    my_socket.async_read_some(
      asio::buffer(data), yield[ec]);

**Note: if asio::spawn() is used with a custom completion handler of
type Handler, the function object signature is actually:
  
  void coroutine(asio::basic_yield_context<Handler> yield);

------------------------------------------------------------------------
r84312 | chris_kohlhoff | 2013-05-17 12:25:10 +1000 (Fri, 17 May 2013) | 4 lines

Move existing examples into a C++03-specific directory, and add a new
directory for C++11-specific examples. A limited subset of the C++03
examples have been converted to their C++11 equivalents.

------------------------------------------------------------------------
r84313 | chris_kohlhoff | 2013-05-17 12:35:08 +1000 (Fri, 17 May 2013) | 26 lines

Add the asio::use_future special value, which adds first-class support
for returning a C++11 std::future from an asynchronous operation's
initiating function.

To use asio::use_future, pass it to an asynchronous operation instead of
a normal completion handler. For example:

  std::future<std::size_t> length =
    my_socket.async_read_some(my_buffer, asio::use_future);

Where a completion handler signature has the form:

  void handler(error_code ec, result_type result);

the initiating function returns a std::future templated on result_type.
In the above example, this is std::size_t. If the asynchronous operation
fails, the error_code is converted into a system_error exception and
passed back to the caller through the future.

Where a completion handler signature has the form:

  void handler(error_code ec);

the initiating function returns std::future<void>. As above, an error
is passed back in the future as a system_error exception.

------------------------------------------------------------------------
r84314 | chris_kohlhoff | 2013-05-17 13:07:51 +1000 (Fri, 17 May 2013) | 27 lines

Add a new handler hook called asio_handler_is_continuation.

Asynchronous operations may represent a continuation of the asynchronous
control flow associated with the current handler. Asio's implementation
can use this knowledge to optimise scheduling of the handler.

The asio_handler_is_continuation hook returns true to indicate whether a
completion handler represents a continuation of the current call
context. The default implementation of the hook returns false, and
applications may customise the hook when necessary. The hook has already
been customised within Asio to return true for the following cases:

- Handlers returned by strand.wrap(), when the corresponding
  asynchronous operation is being initiated from within the strand.

- The internal handlers used to implement the asio::spawn() function's
  stackful coroutines.

- When an intermediate handler of a composed operation (e.g.
  asio::async_read(), asio::async_write(), asio::async_connect(),
  ssl::stream<>, etc.) starts a new asynchronous operation due to the
  composed operation not being complete.

To support this optimisation, a new running_in_this_thread() member
function has been added to the io_service::strand class. This function
returns true when called from within a strand.

------------------------------------------------------------------------
r84315 | chris_kohlhoff | 2013-05-17 20:06:50 +1000 (Fri, 17 May 2013) | 3 lines

Partially decouple Asio from other boost components via an extra level
of indirection.

------------------------------------------------------------------------
r84316 | chris_kohlhoff | 2013-05-17 20:15:21 +1000 (Fri, 17 May 2013) | 2 lines

Minor cleanup.

------------------------------------------------------------------------
r84319 | chris_kohlhoff | 2013-05-17 20:52:08 +1000 (Fri, 17 May 2013) | 9 lines

Support handshake with re-use of data already read from the wire.

Add new overloads of the SSL stream's handshake() and async_handshake()
functions, that accepts a ConstBufferSequence to be used as initial
input to the ssl engine for the handshake procedure.

Thanks go to Nick Jones <nick dot fa dot jones at gmail dot com>, on
whose work this commit is partially based.

------------------------------------------------------------------------
r84320 | chris_kohlhoff | 2013-05-17 20:57:02 +1000 (Fri, 17 May 2013) | 6 lines

Support for creation of TLSv1.1 and TLSv1.2 contexts.

Thanks go to Alvin Cheung <alvin dot cheung at alumni dot ust dot hk>
and Nick Jones <nick dot fa dot jones at gmail dot com>, on whose work
this is based.

------------------------------------------------------------------------
r84322 | chris_kohlhoff | 2013-05-17 21:00:49 +1000 (Fri, 17 May 2013) | 5 lines

Add set_verify_depth function to SSL context and stream.

Thanks go to Nick Jones <nick dot fa dot jones at gmail dot com>, on
whose work this commit is based.

------------------------------------------------------------------------
r84325 | chris_kohlhoff | 2013-05-17 21:04:11 +1000 (Fri, 17 May 2013) | 9 lines

Allow loading of SSL certificate and key data from memory buffers.

Added new buffer-based interfaces:
add_certificate_authority, use_certificate, use_certificate_chain,
use_private_key, use_rsa_private_key, use_tmp_dh.

Thanks go to Nick Jones <nick dot fa dot jones at gmail dot com>, on
whose work this commit is based.

------------------------------------------------------------------------
r84345 | chris_kohlhoff | 2013-05-18 21:24:59 +1000 (Sat, 18 May 2013) | 2 lines

Update copyright notices.

------------------------------------------------------------------------
r84346 | chris_kohlhoff | 2013-05-18 21:54:59 +1000 (Sat, 18 May 2013) | 3 lines

Remove the stackless coroutine class and macros from the HTTP server 4
example, and instead make them a part of Asio's documented interface.

------------------------------------------------------------------------
r84347 | chris_kohlhoff | 2013-05-18 22:01:59 +1000 (Sat, 18 May 2013) | 4 lines

Fix basic_waitable_timer's underlying implementation so that it can
handle any time_point value without overflowing the intermediate
duration objects.

------------------------------------------------------------------------
r84348 | chris_kohlhoff | 2013-05-18 22:07:00 +1000 (Sat, 18 May 2013) | 3 lines

Fix a problem with lost thread wakeups that can occur when making
concurrent calls to run() and poll() on the same io_service object.

------------------------------------------------------------------------
r84349 | chris_kohlhoff | 2013-05-18 22:13:17 +1000 (Sat, 18 May 2013) | 3 lines

Fix implementation of asynchronous connect operation so that it can cope
with spurious readiness notifications from the reactor.

------------------------------------------------------------------------
r84361 | chris_kohlhoff | 2013-05-19 07:56:31 +1000 (Sun, 19 May 2013) | 1 line

Remove some trailing spaces and fix another copyright notice.

------------------------------------------------------------------------
r84363 | chris_kohlhoff | 2013-05-19 14:55:11 +1000 (Sun, 19 May 2013) | 53 lines

Add generic socket protocols and converting move constructors.

Four new protocol classes have been added:

- asio::generic::datagram_protocol
- asio::generic::raw_protocol
- asio::generic::seq_packet_protocol
- asio::generic::stream_protocol

These classes implement the Protocol type requirements, but allow the
user to specify the address family (e.g. AF_INET) and protocol type
(e.g. IPPROTO_TCP) at runtime.

A new endpoint class template, asio::generic::basic_endpoint, has been
added to support these new protocol classes. This endpoint can hold any
other endpoint type, provided its native representation fits into a
sockaddr_storage object.

When using C++11, it is now possible to perform move construction from a
socket (or acceptor) object to convert to the more generic protocol's
socket (or acceptor) type. If the protocol conversion is valid:

  Protocol1 p1 = ...;
  Protocol2 p2(p1);

then the corresponding socket conversion is allowed:

  Protocol1::socket socket1(io_service);
  ...
  Protocol2::socket socket2(std::move(socket1));

For example, one possible conversion is from a TCP socket to a generic
stream-oriented socket:

  asio::ip::tcp::socket socket1(io_service);
  ...
  asio::generic::stream_protocol::socket socket2(std::move(socket1));

The conversion is also available for move-assignment. Note that these
conversions are not limited to the newly added generic protocol classes.
User-defined protocols may take advantage of this feature by similarly
ensuring the conversion from Protocol1 to Protocol2 is valid, as above.

As a convenience, the socket acceptor's accept() and async_accept()
functions have been changed so that they can directly accept into a
different protocol's socket type, provided the protocol conversion is
valid. For example, the following is now possible:

  asio::ip::tcp::acceptor acceptor(io_service);
  ...
  asio::generic::stream_protocol::socket socket1(io_service);
  acceptor.accept(socket1);


[SVN r84388]
2013-05-20 12:32:20 +00:00

242 lines
8.8 KiB
C++

//
// blocking_tcp_client.cpp
// ~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2013 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#include <boost/asio/connect.hpp>
#include <boost/asio/deadline_timer.hpp>
#include <boost/asio/io_service.hpp>
#include <boost/asio/ip/tcp.hpp>
#include <boost/asio/read_until.hpp>
#include <boost/asio/streambuf.hpp>
#include <boost/system/system_error.hpp>
#include <boost/asio/write.hpp>
#include <cstdlib>
#include <iostream>
#include <string>
#include <boost/lambda/bind.hpp>
#include <boost/lambda/lambda.hpp>
using boost::asio::deadline_timer;
using boost::asio::ip::tcp;
using boost::lambda::bind;
using boost::lambda::var;
using boost::lambda::_1;
//----------------------------------------------------------------------
//
// This class manages socket timeouts by applying the concept of a deadline.
// Each asynchronous operation is given a deadline by which it must complete.
// Deadlines are enforced by an "actor" that persists for the lifetime of the
// client object:
//
// +----------------+
// | |
// | check_deadline |<---+
// | | |
// +----------------+ | async_wait()
// | |
// +---------+
//
// If the actor determines that the deadline has expired, the socket is closed
// and any outstanding operations are consequently cancelled. The socket
// operations themselves use boost::lambda function objects as completion
// handlers. For a given socket operation, the client object runs the
// io_service to block thread execution until the actor completes.
//
class client
{
public:
client()
: socket_(io_service_),
deadline_(io_service_)
{
// No deadline is required until the first socket operation is started. We
// set the deadline to positive infinity so that the actor takes no action
// until a specific deadline is set.
deadline_.expires_at(boost::posix_time::pos_infin);
// Start the persistent actor that checks for deadline expiry.
check_deadline();
}
void connect(const std::string& host, const std::string& service,
boost::posix_time::time_duration timeout)
{
// Resolve the host name and service to a list of endpoints.
tcp::resolver::query query(host, service);
tcp::resolver::iterator iter = tcp::resolver(io_service_).resolve(query);
// Set a deadline for the asynchronous operation. As a host name may
// resolve to multiple endpoints, this function uses the composed operation
// async_connect. The deadline applies to the entire operation, rather than
// individual connection attempts.
deadline_.expires_from_now(timeout);
// Set up the variable that receives the result of the asynchronous
// operation. The error code is set to would_block to signal that the
// operation is incomplete. Asio guarantees that its asynchronous
// operations will never fail with would_block, so any other value in
// ec indicates completion.
boost::system::error_code ec = boost::asio::error::would_block;
// Start the asynchronous operation itself. The boost::lambda function
// object is used as a callback and will update the ec variable when the
// operation completes. The blocking_udp_client.cpp example shows how you
// can use boost::bind rather than boost::lambda.
boost::asio::async_connect(socket_, iter, var(ec) = _1);
// Block until the asynchronous operation has completed.
do io_service_.run_one(); while (ec == boost::asio::error::would_block);
// Determine whether a connection was successfully established. The
// deadline actor may have had a chance to run and close our socket, even
// though the connect operation notionally succeeded. Therefore we must
// check whether the socket is still open before deciding if we succeeded
// or failed.
if (ec || !socket_.is_open())
throw boost::system::system_error(
ec ? ec : boost::asio::error::operation_aborted);
}
std::string read_line(boost::posix_time::time_duration timeout)
{
// Set a deadline for the asynchronous operation. Since this function uses
// a composed operation (async_read_until), the deadline applies to the
// entire operation, rather than individual reads from the socket.
deadline_.expires_from_now(timeout);
// Set up the variable that receives the result of the asynchronous
// operation. The error code is set to would_block to signal that the
// operation is incomplete. Asio guarantees that its asynchronous
// operations will never fail with would_block, so any other value in
// ec indicates completion.
boost::system::error_code ec = boost::asio::error::would_block;
// Start the asynchronous operation itself. The boost::lambda function
// object is used as a callback and will update the ec variable when the
// operation completes. The blocking_udp_client.cpp example shows how you
// can use boost::bind rather than boost::lambda.
boost::asio::async_read_until(socket_, input_buffer_, '\n', var(ec) = _1);
// Block until the asynchronous operation has completed.
do io_service_.run_one(); while (ec == boost::asio::error::would_block);
if (ec)
throw boost::system::system_error(ec);
std::string line;
std::istream is(&input_buffer_);
std::getline(is, line);
return line;
}
void write_line(const std::string& line,
boost::posix_time::time_duration timeout)
{
std::string data = line + "\n";
// Set a deadline for the asynchronous operation. Since this function uses
// a composed operation (async_write), the deadline applies to the entire
// operation, rather than individual writes to the socket.
deadline_.expires_from_now(timeout);
// Set up the variable that receives the result of the asynchronous
// operation. The error code is set to would_block to signal that the
// operation is incomplete. Asio guarantees that its asynchronous
// operations will never fail with would_block, so any other value in
// ec indicates completion.
boost::system::error_code ec = boost::asio::error::would_block;
// Start the asynchronous operation itself. The boost::lambda function
// object is used as a callback and will update the ec variable when the
// operation completes. The blocking_udp_client.cpp example shows how you
// can use boost::bind rather than boost::lambda.
boost::asio::async_write(socket_, boost::asio::buffer(data), var(ec) = _1);
// Block until the asynchronous operation has completed.
do io_service_.run_one(); while (ec == boost::asio::error::would_block);
if (ec)
throw boost::system::system_error(ec);
}
private:
void check_deadline()
{
// Check whether the deadline has passed. We compare the deadline against
// the current time since a new asynchronous operation may have moved the
// deadline before this actor had a chance to run.
if (deadline_.expires_at() <= deadline_timer::traits_type::now())
{
// The deadline has passed. The socket is closed so that any outstanding
// asynchronous operations are cancelled. This allows the blocked
// connect(), read_line() or write_line() functions to return.
boost::system::error_code ignored_ec;
socket_.close(ignored_ec);
// There is no longer an active deadline. The expiry is set to positive
// infinity so that the actor takes no action until a new deadline is set.
deadline_.expires_at(boost::posix_time::pos_infin);
}
// Put the actor back to sleep.
deadline_.async_wait(bind(&client::check_deadline, this));
}
boost::asio::io_service io_service_;
tcp::socket socket_;
deadline_timer deadline_;
boost::asio::streambuf input_buffer_;
};
//----------------------------------------------------------------------
int main(int argc, char* argv[])
{
try
{
if (argc != 4)
{
std::cerr << "Usage: blocking_tcp <host> <port> <message>\n";
return 1;
}
client c;
c.connect(argv[1], argv[2], boost::posix_time::seconds(10));
boost::posix_time::ptime time_sent =
boost::posix_time::microsec_clock::universal_time();
c.write_line(argv[3], boost::posix_time::seconds(10));
for (;;)
{
std::string line = c.read_line(boost::posix_time::seconds(10));
// Keep going until we get back the line that was sent.
if (line == argv[3])
break;
}
boost::posix_time::ptime time_received =
boost::posix_time::microsec_clock::universal_time();
std::cout << "Round trip time: ";
std::cout << (time_received - time_sent).total_microseconds();
std::cout << " microseconds\n";
}
catch (std::exception& e)
{
std::cerr << "Exception: " << e.what() << "\n";
}
return 0;
}