Added new spawn() overloads that conform to the requirements for
asynchronous operations. These overloads also support cancellation. When
targeting C++11 and later these functions are implemented in terms of
Boost.Context directly.
The existing overloads have been retained but are deprecated.
This is no longer an experimental facility. The names deferred and
deferred_t have been temporarily retained as deprecated entities under
the asio::experimental namespace, for backwards compatibility.
This is no longer an experimental facility. The names append and
append_t have been temporarily retained as deprecated entities under
the asio::experimental namespace, for backwards compatibility.
This is no longer an experimental facility. The names as_tuple and
as_tuple_t have been temporarily retained as deprecated entities under
the asio::experimental namespace, for backwards compatibility.
This change adds support for stream-oriented and random-access files.
For example, to write to a newly created stream-oriented file:
asio::stream_file file(
my_io_context, "/path/to/file",
asio::stream_file::write_only
| asio::stream_file::create
| asio::stream_file::truncate);
file.async_write_some(my_buffer,
[](error_code e, size_t n)
{
// ...
});
or to read from a random-access file:
asio::random_access_file file(
my_io_context, "/path/to/file",
asio::random_access_file::read_only);
file.async_read_some_at(1234, my_buffer,
[](error_code e, size_t n)
{
// ...
});
This feature currently supports I/O completion ports on Windows, and
io_uring on Linux (define BOOST_ASIO_HAS_IO_URING to enable).
The experimental::deferred completion token takes a call to an
asynchronous operation's initiating function and turns it into a
function object that accepts a completion token. For example:
auto deferred_op =
timer.async_wait(
boost::asio::experimental::deferred);
...
std::move(deferred_op)(
[](std::error_code ec){ ... });
or
auto deferred_op =
timer.async_wait(
boost::asio::experimental::deferred);
...
std::future<void> =
std::move(deferred_op)(
boost::asio::use_future);
The deferred token also supports chaining, to create simple
compositions:
auto deferred_op =
timer.async_wait(
boost::asio::experimental::deferred(
[&](std::error_code ec)
{
timer.expires_after(
std::chrono::seconds(1));
return timer.async_wait(
boost::asio::experimental::deferred);
});
...
std::future<void> = std::move(deferred_op)(boost::asio::use_future);
The as_tuple completion token adapter can be used to specify that the
completion handler arguments should be combined into a single tuple
argument.
The as_tuple adapter may be used in conjunction with use_awaitable and
structured bindings as follows:
auto [e, n] = co_await socket.async_read_some(
asio::buffer(data), as_tuple(use_awaitable));
Alternatively, it may be used as a default completion token like so:
using default_token = as_tuple_t<use_awaitable_t<>>;
using tcp_socket = default_token::as_default_on_t<tcp::socket>;
// ...
awaitable<void> do_read(tcp_socket socket)
{
// ...
auto [e, n] = co_await socket.async_read_some(asio::buffer(data));
// ...
}
The as_single completion token adapter can be used to specify that the
completion handler arguments should be combined into a single argument.
For completion signatures with a single parameter, the argument is
passed through as-is. For signatures with two or more parameters, the
arguments are combined into a tuple.
The as_single adapter may be used in conjunction with use_awaitable and
structured bindings as follows:
auto [e, n] = co_await socket.async_read_some(
boost::asio::buffer(data), as_single(use_awaitable));
Alternatively, it may be used as a default completion token like so:
using default_token = as_single_t<use_awaitable_t<>>;
using tcp_socket = default_token::as_default_on_t<tcp::socket>;
// ...
awaitable<void> do_read(tcp_socket socket)
{
// ...
auto [e, n] = co_await socket.async_read_some(boost::asio::buffer(data));
// ...
}
Rather than using a context() member function, query the executor's
execution::context_t property to obtain its associated execution
context:
asio::execution_context& context
= asio::query(my_io_executor, asio::execution::context);
When using standard executors, work is tracked by requiring (or
preferring) an executor with the execution::outstanding_work.tracked
property. This replaces executor_work_guard and make_work_guard() with
code of the form
asio::io_context io_context;
auto work = asio::require(io_context.get_executor(),
asio::execution::outstanding_work.tracked);
To explicitly reset work, store the returned work-tracking executor in
an any_io_executor object:
asio::any_io_executor work
= asio::require(io_context.get_executor(),
asio::execution::outstanding_work.tracked);
and then assign an empty executor into the object when done:
work = asio::any_io_executor();
The BOOST_ASIO_HANDLER_LOCATION((file_name, line, function_name)) macro
may be used to inform the handler tracking mechanism of a source
location. This macro declares an object that is placed on the stack.
When an asynchronous operation is launched with location information, it
outputs lines using the <action> 'n^m', prior to the 'n*m' line that
signifies the beginning of the asynchronous operation. For example:
@asio|1589423304.861944|>7|ec=system:0,bytes_transferred=5
@asio|1589423304.861952|7^8|in 'async_write' (./../../../include/asio/impl/write.hpp:330)
@asio|1589423304.861952|7^8|called from 'do_write' (handler_tracking/async_tcp_echo_server.cpp:62)
@asio|1589423304.861952|7^8|called from 'operator()' (handler_tracking/async_tcp_echo_server.cpp:51)
@asio|1589423304.861952|7*8|socket@0x7ff61c008230.async_send
@asio|1589423304.861975|.8|non_blocking_send,ec=system:0,bytes_transferred=5
@asio|1589423304.861980|<7|
If std::source_location or std::experimental::source_location are
available, the use_awaitable_t token (when default-constructed or used
as a default completion token) will also cause handler tracking to
output a source location for each newly created asynchronous operation.
A use_awaitable_t object may also be explicitly constructed with location
information.
Every I/O executor type now has an associated default completion token
type. This is specified via the `default_completion_token_type` trait.
This trait may be used in asynchronous operation declarations as
follows:
template <
typename IoObject,
typename CompletionToken =
typename default_completion_token_type<
typename IoObject::executor_type
>::type
>
auto async_foo(
IoObject& io_object,
CompletionToken&& token =
typename default_completion_token_type<
typename IoObject::executor_type
>::type{}
);
If not specialised, this trait type is `void`, meaning no default
completion token type is available for the given I/O executor.
The `default_completion_token_type` trait is specialised for the
`use_awaitable` completion token so that it may be used as shown in the
following example:
auto socket = use_awaitable.as_default_on(tcp::socket(my_context));
// ...
co_await socket.async_connect(my_endpoint); // Defaults to use_awaitable.
In this example, type of the `socket` object is transformed from
`tcp::socket` to have an I/O executor with the default completion token
set to `use_awaitable`.
Alternatively, the socket type may be computed directly:
using tcp_socket = use_awaitable_t<>::as_default_on_t<tcp::socket>;
tcp_socket socket(my_context);
// ...
co_await socket.async_connect(my_endpoint); // Defaults to use_awaitable.
The awaitable<>, co_spawn(), this_coro, detached, and redirect_error
facilities have been moved from the asio::experimental namespace to
namespace asio. As part of this change, the this_coro::token() awaitable
has been superseded by the asio::use_awaitable completion token.
Please note that the use_awaitable and redirect_error completion tokens
work only with asynchronous operations that use the new form of
async_result with member function initiate(). Furthermore, when using
use_awaitable, please be aware that the asynchronous operation is not
initiated until co_await is applied to the awaitable<>.
All I/O objects now have an additional Executor template parameter. This
template parameter defaults to the asio::executor type (the polymorphic
executor wrapper) but can be used to specify a user-defined executor
type.
I/O objects' constructors and functions that previously took an
asio::io_context& now accept either an Executor or a reference to a
concrete ExecutionContext (such as asio::io_context or
asio::thread_pool).
One potential point of breakage in existing user code is when reusing an
I/O object's io_context for constructing another I/O object, as in:
asio::steady_timer my_timer(my_socket.get_executor().context());
To fix this, either construct the second I/O object using the first I/O
object's executor:
asio::steady_timer my_timer(my_socket.get_executor());
or otherwise explicitly pass the io_context:
asio::steady_timer my_timer(my_io_context);